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ABSTRACT
Missing data arise frequently in clinical and epidemiological fields, in
particular in longitudinal studies. This paper describes the core features
of an R package wgeesel, which implements marginal model fitting (i.e.,
weighted generalized estimating equations, WGEE; doubly robust GEE)
for longitudinal data with dropouts under the assumption of missing at
random. More importantly, this package comprehensively provide exist-
ing information criteria for WGEE model selection on marginal mean or
correlation structures. Also, it can serve as a valuable tool for simulating
longitudinal data with missing outcomes. Lastly, a real data example and
simulations are presented to illustrate and validate our package.
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1. Introduction

Longitudinal data are common in clinical trials or observational studies. There exist two
major approaches for analysis, generalized estimating equations (GEE) and mixed-effect
models, which have different tendencies in model fitting depending on the study objectives.
In particular, mixed-effect models adopt an individual-level approach by accommodating
random effects to capture the correlation among the observations within-subject (Crowder
1995; Wang 2014; Hedeker and Gibbons 2006); GEE is employed for marginal regression
analysis based on a quasi-likelihood function by providing the population-averaged parame-
ter estimates. Due to common research interest in conducting the population-level inference
such as overall treatment effect, we focus on GEE, which has several defining features such as
the relaxation of distribution assumption with only requirement on the correct specification of
marginal mean and variance as well as the link function connecting the covariates of interest
and marginal mean, the correlation structure among these dependent responses treated as
nuisance parameters which if misspecified will not influence the asymptotic properties of
parameter estimates under mild regularity conditions and so on (Liang and Zeger 1986; Wang
and Long 2011; Wang 2014; Wang et al. 2016).

Of note is that in longitudinal studies, missing data are frequently encountered. As is well
known, three types of missing mechanisms have been summarized and studied (Rubin 1976;
Little and Rubin 2014): if the probability of a missing response does not depend on either
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2 C. XU ET AL.

the observed or unobserved responses conditional on the covariates, the data are said to be
missing completely at random (MCAR); it is missing at random (MAR) if conditional on the
observed data and the covariates, the probability of a missing response is independent of the
unobserved data; also, if the missingness is related to the unobserved responses, the data are
said to be missing not at random (MNAR). In practice, subjects often drop out of the study or
are lost to follow-up for some reasons such as drug resistance, and the missing data induced
by dropouts form a monotone missing pattern which is commonly assumed to be MAR
(Preisser et al. 2002; Fitzmaurice et al. 2012). To handle missing data, there are two widely
used techniques, inverse probability weight (IPW) and multiple imputation (MI). In some
occasions, IPW is preferred by researchers due to several appealing features, for instance, less
computational burden and flexible implementation in software, easier to be understood by
clinicians in practice and so on (Rubin 1976; Seaman and White 2011).

GEE can lead to consistent parameter estimates only when the data are MCAR in the
presence of missing data (Robins et al. 1995; Liang and Zeger 1986). However, when the data
are MAR or MNAR, the estimates of the regression parameters will be biased (Laird 1988).
Robins et al. (1995) first proposed the weighted GEE (WGEE) method for bias correction
under the assumption of MAR, and the WGEE is an extension of GEE by incorporating an
IPW matrix. Preisser et al. (2002) and Fitzmaurice et al. (2012) have shown that WGEE can
provide valid inference on marginal regression parameters if the mean model and the model
for the missingness are correctly specified even without the necessity for correct specification
of the within-subject correlation structure. Of note is that there are two types of weights in
literature, subject-specific weight (i.e., the same weight assigned to all the observations from a
subject) and observation-specific weight (i.e., a specific weight assigned to each observation).
The former one was originally developed due to computational convenience, and also Preisser
et al. (2002) have shown that observation-level WGEE can provide more efficient estimate
than the subject-level WGEE; thus observation-level weights will be applied in our package.
Later on, doubly robust GEE was further developed under MAR by incorporating the
augmented IPW method for efficiency improvement. The main advantage of this model is
that so-called doubly robust estimators are consistent if at least one of the missing model and
the outcome model is correctly specified (Bang and Robins 2005; Seaman and Copas 2009;
Chen and Zhou 2011; Birhanu et al. 2011; Padilha and Demarqui 2015), and this approach
has been widely adopted for clustered randomized trials (CRTs) (Stephens et al. 2012; Prague
et al. 2017).

To appreciate the features of wgeesel, we briefly review GEE implementations in existing
statistical software R and SAS. The regular GEE with different types of outcomes (Liang and
Zeger 1986) has been implemented in SAS with the statements of PROC GENMOD and PROC
GEE (SAS Institute Inc. 2016), and the packages yags, gee, repolr and geepack in R (Carey and
Ripley 2011; Nooraee et al. 2014; Carey 2015; Parsons 2016; Højsgaard et al. 2016). However,
the software implementation of the WGEE approach accommodating missing data under
MAR is limited. Recently, SAS (SAS Institute Inc. 2016) launched an experiential version
of PROC GEE to fit WGEE for longitudinal data with missing dropout data. Currently, this
release does not include all of the capabilities in the REPEATED statement in the GENMOD
procedure, and additional features need to be released, such as the weights output from
WGEE. Also, SAS is a commercial statistical software; thus, the source code for WGEE fitting
in PROC GEE is inaccessible, which poses restriction for researchers on relevant studies if
they need to conduct modification on current methods. To our best knowledge, there is no
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reliable and available R package for implementing WGEE. Even though in several R functions
for GEE estimation, there exist options in the arguments to incorporate the weights for WGEE
estimation, for instance, the function geeM in geeM (McDaniel et al. 2016) and the function
geeglm in geepack, the inference is not reliable under most circumstances because the
weight arguments do not properly incorporate the weights for WGEE. Based on our finding,
the estimates are only the same as the WGEE estimates from PROC GEEwhen the “working”
correlation structure is independent. To illustrate this, we conducted a simulation study. 250
replicates of correlated binary responses with a sample size of 100 were generated, where the
true regression parameter values were β0 = −0.5 and β1 = 0.5, and the true correlation
structure is exchangeable with ρ = 0.25 (refer to Section 4 for more details). For each
dataset, we estimated the weights and plugged them into geeM and geeglm to obtain the
WGEE parameter estimates under the exchangeable “working” correlation structure which
is true. We found out that the estimates of β0 and β1 had biases of −0.096 and 0.086 by
geeM, and also −0.087 and 0.070 by geeglm, respectively, while the function wgee in
our package wgeesel yielded negligible biases of −0.01 and 0.03. Also, the estimates of the
standard error were not consistent, where the estimate of standard error for β1 based on
geeM and geeglm was 0.6062 and 0.6379, respectively, while it was 0.6226 using both
wgee and PROC GEE. More recently, Salazar et al. (2016) provided a sample R program
to fit WGEE, in which glm was adopted to estimate the weights, and geeglm was used for
WGEE estimation; however, their estimation approach for the weights is problematic. For the
data with a monotone missing pattern, that is, MAR, they utilized the data at each individual
time for weight estimation, and their estimation did not condition on the previous visit that
was not missing (Robins et al. 1995). We applied their R source code on the imps dataset in
Section 5 for comparison. For example, for patient 1 with four visits, the weights based on their
code at each visit were 1, 1.0000, 1.14251 and 1.3287; however, the weights obtained by both
wgee in wgeesel and SAS macro provided by Shen and Chen (2012) were 1, 1.0031, 1.1130,
and 1.2005. Obviously, the last two weights calculating by their approach are slightly larger,
indicating the inaccuracy of their R program which may lead to invalid inference. Therefore,
wgeesel provides valid inference on WGEE with different types of outcomes and “working”
correlation structures. Also, with regard to doubly robust GEE model fitting, wgeesel can also
be adopted by embedding the existing work such as R packages CRTgeeDR (Prague et al.
2017), which have been popularly applied for marginal regression in CRTs with missing data.

Besides marginal model fitting, the major contribution of our package wgeesel is com-
prehensively providing existing information criteria particularly for WGEE in the presence
of monotone/dropout missingness under MAR. In regression analysis, model selection is
important to identify the best model with the traditional information criteria, such as Akaike
information criterion (AIC), Bayesian information criterion (BIC), and Mallow’s Cp (Mallows
1973; Akaike 1974; Raftery 1995). However, in longitudinal models with GEE/WGEE, these
information criteria cannot be directly applicable because these models are not likelihood
based. Besides, the model selection for longitudinal data analysis includes not only the
variable selection in the mean model, but also the “working” correlation structure selec-
tion because of potential efficiency loss due to in-appropriately specified correlation struc-
tures; and the information criteria could be different for these two selection objectives. Pan
(2001) proposed a modification of AIC, the quasi-likelihood under the independence model
criterion (QIC), for regular GEE model selection where the likelihood was replaced by quasi-
likelihood and a proper adjustment was made for the penalty term. QIC can be used for both
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variable selection and correlation structure selection in GEE analysis, which is available in
SAS PROC GENMOD and PROC GEE (SAS Institute Inc. 2016). Also, R packages yags and
MuMIn (Carey and Ripley 2011; Bartoń 2015) both provide QIC for GEE model selection.
On the other hand, Imori (2013) proposed modified QIC (MQIC) as an asymptotic unbiased
estimator of the risk function based on the independent quasi-likelihood. QIC is exactly and
asymptotically equivalent to MQIC when the “working” correlation matrix is independent
and includes the true correlation structure, respectively. Rotnitzky and Jewell (1990) proposed
the Rotnitzky and Jewell criteria (RJC) to examine the adequacy of “working” correlation
structure in GEE analysis. The criteria of MQIC and RJC are for GEE model selection, but have
not been available in any software except our package wgeesel. Also, we provide an improved
RJC in small sample size by utilizing the pooled information from all subjects for variance
estimation, which is applicable for balanced longitudinal data (Wang and Long 2011). With
regard to information criteria for WGEE model selection, Shen and Chen (2012) proposed
the missing longitudinal information criterion (MLIC) for the selection of the mean model
based on the quadratic loss function and showed it is superior to QIC when the outcome
data are subject to dropout/monotone missingness and are MAR. In addition, they provided
the MLIC for correlation (MLICC) for selection of the correlation structure in WGEE. They
provided a SAS macro to calculate the MLIC and MLICC. However, their program is not user-
friendly with limited outputs unless users manually modify the source code to obtain more
results (e.g., weights). Another option is the weighted quasi-likelihood information criterion
(QICWp) accommodating the weight matrix proposed by Platt et al. (2013), which usually
selects the correct mean model more often than the adjusted R2 in various scenarios. Later on,
Gosho (2016) mentioned that QICWp would not be applied to select a “working” correlation
structure. To compensate for the imperfection of QICWp, Gosho (2016) proposed QICWr for
variable selection and correlation structure selection in WGEE. Until now, none of these have
been implemented in R, and our package wgeesel fills up this gap.

Furthermore, this package provides a valuable and essential tool for researchers to simulate
longitudinal data with missing responses to different types (i.e., continuous, binary and
count). Leisch et al. (1998) proposed an algorithm to generate multivariate binary distribu-
tions with a given correlation structure or with given pairwise joint probabilities. Demirtas
and Doganay (2012) developed algorithms to generate multivariate random variables with
binary and normal/non-normal components. Amatya and Demirtas (2017) generated mixed
multivariate count and continuous data from two marginal moments of Poisson and normal
distributions. By considering most commonly used correlation structures (i.e., exchangeable,
AR1), complete longitudinal data can be first generated based on multivariate distributions,
and then given pre-specified drop-out model, the missing probabilities will be calculated.
Note that if one observation is missing, the subsequent ones will also be missing to achieve
the monotone pattern which is our focus here.

The paper is organized as follows. In Section 2, we outline marginal model fitting (i.e.,
WGEE, doubly robust GEE), and thus described model selection criteria particularly for
WGEE when the outcome data are dropout missing under MAR. Section 3 describes the
core functions (wgee, QICW.gee, MLIC.gee, etc.) in wgeesel. Simulation studies are
conducted for the data with different types of outcomes or correlation structures in Section 4.
Section 5 illustrates the use of wgeesel in a longitudinal data application with repeated binary
responses. Lastly, we summarize the features of the package and provide future directions in
Section 6.
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2. Methodology

2.1. WGEE and doubly robust WGEE

Let Yij represent the jth response on the ith subject with a p × 1 vector of covariates xij, j =
1, . . . , T, i = 1, . . . , K. Thus, Yi = (Yi1, . . . , YiT)T is denoted as a T × 1 vector of outcomes,
and Xi = (xi1, . . . , xiT)T is a T ×p matrix of covariates for subject i. For simplicity, we assume
balanced data with equal number of observations for all subjects. Let μi = (μi1, . . . , μiT)T =
E(Yi|Xi) and Vi = var(Yi|Xi). Note that μi is usually modeled via a generalized linear model
with g(μi) = Xiβ with g as a specified link function (McCullagh and Nelder 1989), β is a
p-vector of regression parameters, and Vi is given by Vi = φA1/2

i Ri(ρ)A1/2
i . The matrix Ai

is a T × T diagonal matrix with diagonal elements var(Yij|xij) = ν(μij), j = 1, . . . , T, where
ν is a known variance function at μij and φ is a scale (dispersion) parameter, and Ri(ρ) is a
specified “working” correlation matrix depending on a set of parameters ρ. If Ri(ρ) is the true
correlation matrix, then Vi is the true covariance matrix of Yi. Denote the indicator rij as 1 if
the outcome Yij is observed; otherwise rij = 0 if Yij is missing.

Under MAR assumption, Robins et al. (1995) proposed WGEE method, which extends
GEE by incorporating a weight matrix based on the inverse probability of observing each
observed outcome (i.e., observation-level weight matrix) to adjust for dropout missingness
(Preisser et al. 2002). Given the observed data for subject i, the probability of observing the
response Yij is denoted as wij = Pr(rij = 1 | Yi, Xi), which is generally unknown, but
can be estimated. For the first time point, we always assume ri1 = 1. Under the monotone
missing pattern, wij = λi1 × λi2 × · · · λij, where λi1 = 1, and λij = Pr(rij = 1 | ri(j−1) =
1, Yi1, . . . , Yi(j−1), Xi), for j = 2, . . . , T. λij can be estimated from the logistic regression model
with zij as a vector of predictors such as the time variable, baseline covariates, and/or past
outcome variable and α is the vector of corresponding regression parameters.

Under MAR, the estimate of β can be obtained based on the following estimating equation:

U(β) =
K∑

i=1
Ui(β) =

K∑
i=1

DT
i V−1

i Wi(Yi − μi) = 0, (1)

where Di = ∂μi
∂βT , and the weight matrix Wi = diag(ri1/wi1, . . . riT/wiT). Robins et al.

(1995) have showed that WGEE estimator β̂ is consistent estimation of β without requiring
correct specification the correlation matrix. We adopt the following algorithm to develop
the wgee function, where the observation-specific weight matrix is considered (Lin and
Rodriguez 2015):
1. Fit a logistic regression model with data (rij, zij) and estimate α by maximizing the

following log-partial likelihood:
K∑

i=1

T∑
j=2

ri,j−1 log{λij(α)rij[1 − λij(α)]1−rij}. (2)

Thereafter, the conditional probability of observing subject i at the jth time is estimated by
ŵij = λ̂i1 × λ̂i2, . . . λ̂ij, where λ̂ij = λ̂ij(zij, α̂) is the predicted probability obtained from
the logistic regression.

2. Assuming independence of the responses Yi, compute an initial estimate of β with an
ordinary generalized linear model.
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6 C. XU ET AL.

3. Given the specified “working” correlation structure, estimate the correlation matrix R
based on the standardized residuals, the current estimate of β , denoted by β̂q, and the
specific structure of R, q = 1, 2, . . . , Q.

4. Compute the T × T estimated covariance matrix: V̂i = φ̂Â1/2
i Ri(ρ̂)Â1/2

i , based on β̂q

5. Update β̂ by β̂q:

β̂q+1 = β̂q +
[ K∑

i=1
D̂T

i V̂−1
i D̂i

]−1 [ K∑
i=1

D̂T
i V̂−1

i Wi(Yi − μ̂i)

]
. (3)

6. Repeat steps 3–5 until convergence.
7. Compute the asymptotic covariance matrix of β̂ as follows (Preisser et al. 2002):

V̂W =
( K∑

i=1
Ûi

)−1 ( K∑
i=1

ÊiÊT
i

)( K∑
i=1

Ûi

)−1

, (4)

where Êi = Ûi − (
∑K

i=1 ÛiŜT
i )(

∑K
i=1 ŜiŜT

i )−1Ŝi, Ûi = D̂T
i V̂−1

i Wi(Yi − μ̂i), and
Ŝi = ∑

j ri,j−1(rij − λ̂ij)zij.
It is known that WGEE estimators are consistent when the dropout model is correctly

specified (Robins et al. 1995). The more appealing method, doubly robust GEE, has gained
more attention due to the relaxation of this restriction by combining the imputation method,
and doubly robust GEE estimators are still consistent if either of the dropout model and the
outcome model for imputation is correctly specified (Seaman and Copas 2009; Prague et al.
2016). There are different versions of doubly robust GEE because of subjective selection of
the outcome model under the variety of scenarios, and here we establish a function of drgee
based upon the package CRTgeeDR, where more details can be referred to Prague et al. (2016,
2017).

Of note is that both WGEE and doubly robust GEE can achieve valid inference under
the assumption of MAR (Shen and Chen 2012; Wang and Long 2011; Gosho 2016; Seaman
and Copas 2009; Prague et al. 2016). Therefore, sensitivity analysis is crucial to evaluate
the missing mechanism before model fitting in practice. There exist substantial work and
discussion on missing data (Little and Rubin 1987; Ibrahim and Molenberghs 2009). Due to
the program availability, the most recent work by Moreno-Betancur and Chavance (2016) is
recommended, where the pattern-mixture model factorization of the full data likelihood was
proposed (Moreno-Betancur and Chavance 2016); however, other programs combining SAS
and R functionalities can also be considered (Bunouf et al. 2015).

2.2. Model selection

In this section, we outline the existing information criteria for GEE model selection with
particular attention for longitudinal data in the presence of dropout/monotone missingness
under MAR. Of note is that two major objective functions are relied on for information
criteria derivation, quasi-likelihood function (i.e., QIC, QICW) and quadratic loss function
(i.e., MLIC, MLICC) (McCullagh and Nelder 1989; Pan 2001; Shen and Chen 2012).
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2.2.1. QIC and QICW
Based on quasi-likelihood, Pan (2001) proposed a criterion, QIC, to select an optimal mean
model or “working” correlation structure in GEE, which is shown by

QIC = −2Q(β̂(Ri); Ii, Di) + 2tr(�̂IV̂G), (5)
where Q(β̂(Ri); Ii, Di) = ∑K

i=1
∑T

j=1 Q(β̂ , φ̂; Yij) is a quasi-likelihood function, and �̂I =∑K
i=1 DT

i A−1
i Di given the “working” correlation structure is independent. In addition, Pan

(2001) provided QICu = −2Q(β̂(Ri); Ii, Di) + 2p as an approximation to QIC. Because if
all model specifications in GEE are correct, �̂−1

I and V̂G are asymptotically equivalent, thus
tr(�̂IV̂G) ≈ tr(I) = p. Since the validity of the penalty term 2p is unclear under finite
samples, the application of QICu is not recommended (Cui and Qian 2007).

Literatures have shown that QIC does not perform satisfactory in the application of longi-
tudinal data with dropout/monotone missingness that is MAR. Shen and Chen (2012) showed
that the proportion of correct model selection by QIC decreased as the dropout rate increased.
To adjust for missing data under MAR, Platt et al. (2013) proposed a criterion, QICWp =
−2Qw(β̂(Ri); Ii, Di, Wi) + 2p, where Qw(β̂(Ri); Ii, Di, Wi) is the weighted quasi-likelihood
component with Wi defined in Eq. (1). This criterion is an extension of QICu, but they did
not provide comprehensive evaluation. Later on, Gosho (2016) proposed a criterion for model
selection based on the weighted quasi-likelihood function given by

QICWr = −2Qw(β̂(Ri); Ii, Di, Wi) + 2tr(�̂IV̂W), (6)
where the only difference between QICWp and QICWr is the second penalty term which was
extended from QIC in Eq. (5). The model with the smallest QICWr can be used for both
variable selection and correlation structure selection. In particular, the author also argued
that 2p would be an inappropriate penalty term of QICWp for model selection regardless of
the presence or absence of dropout missingness.

2.2.2. MLIC and MLICC
Another alternative criterion for variable selection in WGEE is MLIC proposed by Shen and
Chen (2012). Unlike QICWr , MLIC is based on a quadratic loss function, which is employed
to measure how well the candidate model predicts the true model. Mallows (1973) also
considered this measure for the development of Mallows’ Cp. MLIC is expressed as follows:

MLIC =
K∑

i=1
(Yi − μ̂i)

TWi(Yi − μ̂i) + 2tr(Ĥ−1
K JK), (7)

where

ĤK =
K∑

i=1
DT

i V−1
i WiDi

and

JK =
K∑

i=1

(
DT

i V−1
i Wi(Yi − μ0

i )(Yi − μ0
i )

TWi − Gi(Yi − μ0
i )

TWi
)

Di

evaluated at β̂ and α̂, where Gi = (
∑K

m=1 UmST
m)(

∑K
m=1 SmST

m)−1Si with U and S defined
in Eq. (4). Here, μ0

i = E(Yi) denotes the true mean for subject i with the estimate denoted
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Table 1. The list of potential correlation structures in wgee.
Name R(ρ)

Independence Cor(Yij , Yij′ ) = 0, j �= j′
Exchangeable Cor(Yij , Yij′ ) = ρ, j �= j′
First-order Autoregressive (AR1) Cor(Yij , Yij′ ) = ρ|j−j′| , j �= j′
Unstructured Cor(Yij , Yij′ ) = ρjj′ , j �= j′

by μ̂i based on the candidate model. In practice, μ0
i is unknown, which can be estimated

from the largest candidate model under consideration (Mallows 1973; Shen and Chen 2012).
In addition, with regard to the selection of “working” correlation structure, Shen and Chen
(2012) developed the following criterion:

MLICC =
K∑

i=1
(Yi − μ̂i)

TWi(Yi − μ̂i) + 2tr(Ĥ−1
K LK), (8)

where

LK =
K∑

i=1
DT

i V−1
i

[
�i ∗ Wi(Yi − μ0

i )(Yi − μ0
i )

TWi
]
Di.

Note that �i is a T × T matrix with the (j, u) element as �i,j,u = wi,s, s = min(j, u), 1 ≤ j,
u ≤ T. (∗ denotes the element-by-element multiplication of matrices).

2.3. Simulation of longitudinal data with missing responses under MAR

For the simulation of longitudinal data, we consider three types of outcomes (i.e., continuous,
binary and count) and potential correlation structures shown in Table 1. The marginal mean
μi of the outcome variables Yi is given by

g(μi) = β0 + βT
1 xi, (9)

where g is the link function corresponding to types of outcomes, for instance, an identity link
function for continuous outcomes, a logit link function for binary outcomes, and a log link
function for count data. xi includes cluster-level or subject-level covariates of interest and the
associated parameters are denoted by β1. Then, Yi can be generated with a given correlation
structure R(ρ) and marginal mean μi. Here, we adopt the functions of “mvrnorm”, “rmvbin”
and “genPoisNor” for three types of outcome generation, and the details of the algorithms
can be referred to the literature (Demirtas and Doganay 2012; Leisch et al. 1998; Amatya and
Demirtas 2017). Afterward, given the pre-specified model for missing data, the probability of
missingness at each observation for each subject can be obtained; thus, the missing status can
be determined based on the Bernoulli distribution. Note that if one observation is missing,
all the subsequent ones will also be missing, and also the assumption of MAR is ensured by
the model for missingness which only depends on the observed data.

3. Description of core functions

The main function in wgeesel to implement WGEE approach for longitudinal data with
dropout/monotone missing responses under MAR is wgee. In addition, wgeesel provides
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functions QIC.gee, QICW.gee and MLIC.gee to compute QIC, QICW, and MLIC for
model selection in GEE adjusted for potential missing data that is MAR.

3.1. Main functions

The standard code for fitting the marginal model by WGEE is:
wgee(model, data, id, family, corstr, scale=NULL, mismodel=NULL)

• model: The model to be fitted by WGEE method. It is the same as theformula argument
in the geeglm function.

• data: The name of the dataset.
• id: Subject id in the dataset.
• family: Specify the error distribution and link function in wgee and is identified by

the name of the corresponding distribution in a generalized linear model. The available
function are: “gaussian”, “binomial” and “poisson”.

• corstr: Three pre-defined “working” correlation structures are available, and they are
“independence”, “exchangeable”, “ar1” and “unstructured” (Table 1).

• scale: A numeric variable giving the value for the scale parameter φ. It should be known;
otherwise, it needs to be estimated. The default setting is NULL.

• mismodel: Specify the logistic regression model for weight estimation.
The wgee function largely follows the syntax and the output style of the geeglm

function and provides comprehensive outputs including parameter estimation, weights, scale
parameter and so on. Also, with regard to the existing information criteria for model selection,
the functions for computing QIC, QICW and MLIC are:

QIC.gee(object);
QICW.gee(object);
MLIC.gee(object, object_full).

The arguments in the model selection function QIC.gee, QICW.gee and MLIC.gee are
fitted model objects of class “wgee”. One argument of note inMLIC.gee isobject_full,
which is the fitted model object of class “wgee” that specifies the largest candidate model
under consideration. QIC.gee calculates QIC and QICu. QICW.gee computes the QICWr
and QICWp. MLIC.gee outputs MLIC and MLICC.

In addition, the data_sim function in wgeesel is utilized for the simulation of longitudi-
nal data with missing responses under MAR, where normal, Bernoulli or Poisson longitudinal
data with monotone missingness are considered. data_sim simulate multivariate random
variables depending on the following packages: MASS, bindata and PoisNor (Ripley et al.
2017; Leisch et al. 2012; Amatya and Demirtas 2016). In particularly, multivariate normal data
are generated through MASS. Correlated binary data are generated by bindata. Correlated
Poisson variables are generated through PoisNor by inverse CDF transformation method.
Through specifying the number of lags, y_lag can generate the lagged responses within-
subject, which can be included as potential covariates in the dropout model for weight
estimation in WGEE.

3.2. Other available functions

Besides the main selection criteria in WGEE, wgeesel also provides the functions to calculate
additional information criteria including MQIC, RJC and corrected RJC for regular GEE
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which are briefly introduced in Section 1 (Imori 2013; Rotnitzky and Jewell 1990; Wang
and Long 2011). Note that MQIC.gee computes the MQIC and MQICu; RJC calculates
the RJC for selection of “working” correlation structure; RJC2 calculates corrected RJC to
select “working” correlation structure for balanced data when the sample size is relatively
small. Also, the function of drgee can be used to perform doubly robust GEE model
fitting by specifying the dropout model and the outcome model, which is built upon on
the package CRTgeeDR (Prague et al. 2016, 2017). In addition, three datasets with different
types of outcomes from real applications also available in wgeesel. For research purpose, the
simulation function, data_sim, for longitudinal data with monotone missingness are also
provided with more details described in Section 4. The objects returned by the functions are
detailed in the reference manual (see Value part), which is available from the Comprehensive
R Archive Network at https://cran.r-project.org/package=wgeesel.

4. Simulation

In this section, we will conduct simulation studies to evaluate the validity of wgee by
comparing the results fromPROC GEE (SAS Institute Inc. 2016) and other existing programs.
We consider three types of outcomes, continuous, binary and count, and the marginal mean
μij is given by g(μij) = β0 + β1xij, i = 1, 2, . . . , K; j = 1, 2, . . . , T, where g is the link
function described above, xij is a cluster-level covariate following up a Bernoulli distribution,
the number of visits T = 3 for each subject, and the sample size K = 100. The true parameter
values are β0 = −0.5 and β1 = 0.5, and the true correlation structure is exchangeable with
the correlation coefficient ρ = 0.25.

For the dropout model, we assume the following logistic regression model:

log
λij

1 − λij
= α0 + α1xij + α2Yi,j−1, (10)

where λij = Pr(rij = 1 | ri,j−1 = 1, Yi, xij), α0 = 1, α1 = −0.5 and α2 = −0.5. The
overall proportion of missing observations (i.e., the number of missing observations over KT)
is between 20% to 35%, which varies across different set-ups.

We use the function data_sim in wgeesel to simulate 250 Monte Carlo datasets for each
simulation setting. The sample code for simulating one longitudinal binary data is below:
R> id <- rep(1:100,each=3) #simulate 100 subjects each with 3 observations
R> x <- cbind(1, rep(rbinom(100,1,0.5), each=3)) #generate covariate x(binary)
R> x_mis <- cbind(1,rep(runif(100), each=3)) #generate x2 (continuous)
R> sim_data <- data_sim(id, rho=0.25, phi=1, x, beta=c(-0.5,0.5), x_mis,
+ para=c(1,-0.5,-0.5), corstr="exchangeable", family="binary",
+ lag_level=1) # simulate the correlated binary data
R> data_final <- sim_data$data[,c("id","response_mis","ind","ylag1","2","V2")]
R> colnames(data_final) <- c("id","response","R","y_lag","x1","x2")
R> head(data_final)

id response R y_lag x x2
1 1 0 1 NA 0 0.7209039
2 1 NA 0 0 0 0.7209039
3 1 NA 0 0 0 0.7209039
4 2 0 1 NA 1 0.8757732
5 2 0 1 0 1 0.8757732
6 2 0 1 0 1 0.8757732

We apply the WGEE method on the datasets with three types of outcomes under exchange-
able, AR1 and unstructured “working” correlation structures. The parameter estimates are
obtained from wgee and PROC GEE. The results are summarized in Table 2 using the
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Table 2. Summary of estimation results in WGEE with K = 100 and T = 3.
Exchangeable AR1 Unstructured

Type Parameters True Bias SE SD Bias SE SD Bias SE SD

PROC GEE β0 −0.5 0.0136 0.1113 0.1098 0.0135 0.1118 0.1107 0.0133 0.1111 0.1101
β1 0.5 −0.0087 0.1658 0.1646 −0.0082 0.1667 0.1655 −0.0115 0.1651 0.1644

Continuous
wgee β0 −0.5 0.0136 0.1113 0.1098 0.0136 0.1118 0.1105 0.0136 0.1108 0.1099

β1 0.5 −0.0087 0.1658 0.1646 −0.0082 0.1666 0.1655 −0.0117 0.1645 0.1642
α0 1 −0.0191 0.2665 0.2833 −0.0191 0.2665 0.2833 −0.0191 0.2665 0.2833
α1 −0.5 0.0216 0.3614 0.3665 0.0216 0.3614 0.3665 0.0216 0.3614 0.3665
α2 −0.5 −0.0124 0.1882 0.1916 −0.0124 0.1882 0.1916 −0.0124 0.1882 0.1916

PROC GEE β0 −0.5 −0.0066 0.2435 0.2581 −0.0060 0.2446 0.2592 −0.0065 0.2441 0.2623
β1 0.5 0.0178 0.3602 0.3620 0.0184 0.3622 0.3638 0.0155 0.3617 0.3689

Binary
wgee β0 −0.5 −0.0066 0.2435 0.2581 −0.0062 0.2446 0.2594 −0.0074 0.2435 0.2618

β1 0.5 0.0178 0.3602 0.3620 0.0183 0.3623 0.3638 0.0160 0.3604 0.3675
α0 1 −0.0101 0.2787 0.2904 −0.0101 0.2787 0.2904 0.0101 0.2787 0.2904
α1 −0.5 0.0337 0.3381 0.3534 0.0337 0.3381 0.3534 0.0337 0.3381 0.3534
α2 −0.5 0.0042 0.3383 0.3309 0.0042 0.3383 0.3309 0.0042 0.3383 0.3309

PROC GEE β0 −0.5 −0.0012 0.1483 0.1739 −0.0030 0.1494 0.1751 −0.0077 0.1481 0.1754
β1 0.5 −0.0122 0.2007 0.2262 −0.0099 0.2015 0.2301 −0.0113 0.2001 0.2348

Count
wgee β0 −0.5 −0.0012 0.1483 0.1738 −0.0019 0.1491 0.1750 −0.0038 0.1498 0.1733

β1 0.5 −0.0121 0.2007 0.2262 −0.0115 0.2014 0.2297 −0.0188 0.2032 0.2383
α0 1 0.0045 0.2746 0.2748 0.0045 0.2746 0.2748 0.0056 0.2746 0.2749
α1 −0.5 −0.0053 0.3458 0.3596 −0.0053 0.3458 0.3596 −0.0099 0.3457 0.3571
α2 −0.5 0.0006 0.2018 0.2114 0.0006 0.2018 0.2114 0.0024 0.2017 0.2112

Notes: The missing proportion is 28% for the data with continuous outcome, 32% for the data with binary outcomes and 35%
for the data with count outcomes. The true correlation structure is exchangeable. Bias is the difference between the mean of
the parameter estimates and the true value; SE is the mean of the standard error estimates and SD is the Mont Carlo standard
deviation of the parameter estimates.

following measures: the difference between the mean of the parameter estimates and the
true value (Bias), the mean of the standard error estimates (SE), the Monte Carlo stan-
dard deviation of the parameter estimates (SD). It is noted that PROC GEE is still under
experimental version and cannot provide the ODS (Output Delivery System) output of the
parameter estimates from the dropout model. From the results, we can see that wgee yields
satisfactory parameter estimates because of negligible biases. Under the true correlation
structure (i.e., exchangeable), the estimates obtained by wgee are exactly the same as the
estimates from PROC GEE. When the “working” correlation structure is misspecified (i.e.,
AR1, unstructured), the estimates from wgee are comparable with those from PROC GEE
in terms of bias and SE. Also, as we expect, SDs are close to SEs throughout even though
there is some discrepancy for count data which may be due to higher missing rate. Thus,
we confirm that our function of wgee provides valid inference, and comprehensive output
(e.g., the parameter estimates of the dropout model) can be provided for other research
purposes.

Moreover, we also evaluate the estimators from WGEE and doubly robust GEE by using our
functions ofwgee anddrgee to compare their performances under correct and misspecified
dropout models, where the misspecified dropout model only considers xij as the covariate.
The results are summarized in Table 3, where the mean square errors (MSE) of the parameter
estimates are reported to assess efficiency. The misspecification of dropout model deteriorates
WGEE model fitting but the influence is mild, and similar to the literature (Seaman and Copas
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Table 3. Summary of estimation results in WGEE and doubly robust GEE with K = 100 and T = 3.
Correct dropout model Mis-specified dropout model

Type Parameters True Bias SE MSE Bias SE MSE

wgee β0 −0.5 0.0136 0.1113 0.0122 −0.0162 0.1094 0.0122
β1 0.5 −0.0087 0.1658 0.0271 −0.0180 0.1623 0.0266

Continuous
drgee β0 −0.5 −0.0198 0.0699 0.0123 −0.0093 0.0690 0.0118

β1 0.5 −0.0083 0.0925 0.0220 −0.0106 0.0909 0.0218

wgee β0 −0.5 −0.0066 0.2435 0.0664 −0.0432 0.2414 0.0665
β1 0.5 0.0178 0.3602 0.1309 0.0048 0.3560 0.1293

Binary
drgee β0 −0.5 −0.0380 0.1330 0.0615 −0.0283 0.1329 0.0609

β1 0.5 0.0124 0.1769 0.1111 0.0110 0.1764 0.1110

wgee β0 −0.5 −0.0012 0.1483 0.0301 −0.0316 0.1451 0.0278
β1 0.5 −0.0121 0.2007 0.0511 −0.0231 0.1966 0.0463

Count
drgee β0 −0.5 −0.0298 0.0779 0.0240 −0.0238 0.0776 0.0239

β1 0.5 −0.0057 0.0956 0.0348 −0.0071 0.0950 0.0350

Notes: The missing proportion is 28% for the data with continuous outcome, 32% for the data with binary outcomes and 35%
for the data with count outcomes. The true exchangeable correlation structure is used for both models. Bias is the difference
between the mean of the parameter estimates and the true value; SE is the mean of the standard error estimates and MSE is
the mean square error of the parameter estimates.

2009; Prague et al. 2016; Stephens et al. 2012), doubly robust estimators are more efficient than
WGEE estimators in particularly when the dropout model is misspecified.

5. An illustrative real data application

One of real data examples in our package wgeesel is the imps data set, which is from
the National Institute of the Mental Health Schizophrenia Collaborative Study (Gibbons and
Hedeker 1994). A total of 386 patients were enrolled in this study including 293 patients in
treatment group (Drug = 1) and 93 patients in the placebo group (Drug = 0). Each patient was
visited four times (Week 0, 1, 3 and 6). During each visit, the severity of the schizophrenia
disorder (IMPS79) was measured, which is ranged from 0 to 7. We dichotomize IMPS79
by using the threshold of 4 (Y = 1 if IMPS ≥ 4; otherwise, Y = 0). We are particularly
interested in the marginal association between the risk factors (i.e., drug, sex) and the response
Y . The missing proportion is 7.3% due to patient dropouts. The missing mechanism needs
to be investigated before model fitting. From Figure 1, we can see that the dropout is not
MCAR because the trajectory operates differently in the drug and placebo groups, and also
dropout does not only depend on covariates because the subjects with complete and missing
observations follow different (pre-dropout) trajectories. Therefore, it is reasonable to assume
MAR mechanism, and this is also validated by sensitivity analysis (Moreno-Betancur and
Chavance 2016).

Here, WGEE models are adopted for analysis, and model selection on marginal mean is
conducted given the AR1 “working” correlation structure. Five candidate models shown in
Shen and Chen (2012) are considered, and the corresponding information criteria of QIC,
QICW and MLIC are calculated for each candidate model. The dropout is considered to be
affected by Yi,t−1, Yi,t−2 and Yi,t−3, and the model for missingness is

logit(Rit) = α0+α1Drugi+α2Timei+α3Sexi+α4Yi,t−1+α5Yi,t−2I(t > 2)+α6Yi,t−3I(t > 3)
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Figure 1. Mean IMPS79 across time by the status of dropout.

where I(t > 2) = 1 if t > 2, and 0 otherwise. I(t > 3) = 1 if t > 3, and 0 otherwise. Thus,
the first step is to generate a new dataset with Yi,t−1, Yi,t−2I(t > 2) and Yi,t−3I(t > 3) through
the following program:
R> library(wgeesel)
R> data(imps)
R> imps$subject <- imps$ID
R> lag1y <- ylag(imps$ID,imps$Y,1) ###create lagged y(t-1)##
R> lag2y <- ylag(imps$ID,imps$Y,2,na=F) ###create lagged y(t-2)I(t>2)##
R> lag3y <- ylag(imps$ID,imps$Y,3,na=F) ###create lagged y(t-3)I(t>3)##
R> imps_new <- cbind(imps,lag1y,lag2y,lag3y)

Then, we fit a full candidate model in WGEE method via the function wgee as follows:
R> fit <- wgee(Y˜Time+Sex+Drug+Time:Sex+Sex:Drug+Drug:Time,imps_new,
+ imps_new$ID,family="binomial",corstr ="ar1",scale = NULL,
+ mismodel =R˜Drug+Time+Sex+lag1y+lag2y+lag3y)

summary of fit, which is the object of class “wgee”, summarizes the fit of the model
in WGEE method, including parameter estimates, p-values from hypothesis testing of each
parameter in Eq. (1), estimated correlation and scale parameters:
R> summary(fit)

Call:
wgee(model = Y ˜ Time + Sex + Drug + Time:Sex + Sex:Drug + Drug:Time,
data = imps_new, id = imps_new$ID, family = "binomial", corstr = "ar1",
scale = NULL, mismodel = R ˜ Drug + Time + Sex + lag1y +
lag2y + lag3y)

Estimates Robust SE z value Pr(>|z|)
(Intercept) 3.2657 0.4931 6.623 < 2e-16 ***
Time -1.1803 0.2387 -4.945 7.6e-07 ***
Sex -0.1877 0.4940 -0.380 0.704
Drug -0.5239 0.4918 -1.065 0.287
Time:Sex 0.0227 0.1712 0.133 0.894
Sex:Drug 0.3449 0.4601 0.750 0.453
Time:Drug -0.2518 0.2289 -1.100 0.271
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---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Estimated Scale Parameter: 0.9632

Estimated Correlation: 0.4175

Moreover, the summary of fit$mis_fit, which is the object of class “glm”, summa-
rizes the fit of dropout model including parameter estimates, and p−values from hypothesis
testing of each regression parameter in Eq. (2):

R> summary(fit$mis_fit)

Call:
glm(formula = mismodel, family = binomial(), data = data[adjusted_idx,
])

Deviance Residuals:
Min 1Q Median 3Q Max

-2.45695 0.08982 0.31660 0.42653 1.26253

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.8056 1.2081 5.633 1.77e-08 ***
Drug 0.8357 0.2646 3.158 0.001587 **
Time -2.8870 0.6457 -4.471 7.78e-06 ***
Sex 0.2592 0.2477 1.047 0.295258
lag1y 0.7567 0.2750 2.752 0.005928 **
lag2y -0.6886 0.3653 -1.885 0.059420 .
lag3y 1.7137 0.5093 3.365 0.000766 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 561.17 on 1121 degrees of freedom
Residual deviance: 483.96 on 1115 degrees of freedom
AIC: 497.96

Number of Fisher Scoring iterations: 7

We can see that Yi,t−1 and Yi,t−3 are significantly associated with the dropout missigness,
and Yi,t−2 has the significant trend. Next step is to conduct model selection, and based on the
functions of QIC.gee, QICW.gee, and MLIC.gee in wgeesel, we can have

R> QIC.gee(fit)

QIC QICu Quasi_lik
1 1390 1383.5 -684.7

R> QICW.gee(fit)

QICWr QICWp Wquasi_lik
1 1537.1 1531 -758.5

R> MLIC.gee(fit,fit)
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Table 4. Analysis results of imps data for five candidate models.
Model

Covariate 1 2 3 4 5

Time −1.34(0.08)∗∗∗ −1.37(0.08)∗∗∗ −1.37(0.08)∗∗∗ −1.17(0.21)∗∗∗ −1.18(0.24)∗∗∗
Drug −0.85(0.24)∗∗ −0.86(0.24)∗∗ −0.36(0.44) −0.52(0.49)

Sex 0.12(0.18) −0.19(0.49)

Sex × Time 0.02(0.17)
Sex × Drug 0.34(0.46)
Drug × Time −0.25(0.23) −0.25(0.23)
QIC (AR1) 1401.2 1382.1 1385.2 1381.8 1390.0
QICWr (AR1) 1554.8 1529.6 1532.7 1529.5 1537.1
MLIC (AR1) 261.9 255.8 256.5 256.0 257.5

*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.

MLIC MLICc Wquad_loss
1 257.5 256.9 253.4

The calculation of QIC, QICW and MLIC are returned as well as the quasi-likelihood
(Quasi_lik), weighted quasi-likelihood (Wquasi_lik) and weighted quadratic loss
(Wquad_loss).

We summary the results of the five candidate models in Table 4. The values in bold
are selected as the minimum across the candidate models based on the criterion under
consideration. We find out that Model 2 has the smallest MLIC values among all five candidate
models given AR1 “working” correlation structure. The selection results based on MLIC are
the same as those in Shen and Chen (2012). Compared to the results from MLIC, the model
selected by QICWr and the naive QIC seems larger with an redundant interaction term (i.e.,
Drug × Time, which is non-significant).

6. Conclusion

The key features of this R package wgeesel rely on WGEE model fitting and comprehen-
sive information criteria for WGEE model selection on marginal mean and/or correlation
structures. Simulation studies have shown that the function of wgee provides valid inference
by comparing to the existing software (i.e., SAS), and comprehensive output including the
estimates of the parameters of marginal mean regression as well as the dropout model, scale
and correlation coefficients, and the weights matrix. The current version can be applied for
correlated data with different types of outcomes (i.e., continuous, binary and count) under
commonly used “working” correlation structures (i.e., independence, exchangeable, AR1
and unstructured). More importantly, wgeesel provides a flexible and user-friendly tool to
conduct model selection in GEE adjusted to monotone/dropout missing responses that are
MAR. We accommodate all existing information criteria (i.e., QIC, QICW, MLIC) in wgeesel
to make it possible for identifying the best candidate model in real applications. QICW and
MLIC have been shown to have superior performance on model selection compared to QIC
in the presence of dropout missingness under MAR (Gosho 2016; Shen and Chen 2012). In
addition, we also establish a function to conduct doubly robust GEE based upon the work by
Prague et al. (2016, 2017). The doubly robust GEE estimators have more appealing properties
than WGEE estimators because they are consistent if either of the dropout and outcome
models is correctly specified, which has been validated through simulation studies; however,
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those information criteria for model selection are not applicable for doubly robust GEE. On
the other hand, to ensure valid inference from wgeesel, the assumption of MAR needs to
hold; therefore, the investigation on missing mechanism is crucial, and sensitivity analysis
can be conducted to evaluate the inference deviance under different missing mechanisms,
and further verify the MAR assumption (Bunouf et al. 2015; Moreno-Betancur and Chavance
2016).

Under non-monotone missingness, the MI method has been popularly employed for
statistical inference, and the studies on model selection (i.e., doubly robust GEE) in this
area are limited. Shen and Chen (2013) recommended the use of the MI-based model
selection methods (i.e., MI-based QIC and MLIC), which perform better based on improper
(frequentist) imputation than based on proper (Bayesian) imputation (Wang and Robins
1998; Lu et al. 2010). By employing the existing multiple imputation packages, such as mice in
R (van Buuren and Groothuis-Oudshoorn 2011), we plan to incorporate multiple-imputation-
based model selection approaches into wgeesel to accommodate general patterns of missing
data for future studies, and keep adding more features for wide applications in practice and
research.
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