
Homework Assignment 4

Statistical Methods for Analysis with Missing Data, Winter 2019

Instructor: Mauricio Sadinle, Department of Biostatistics, U. of Washington – Seattle

Submit your solutions via Canvas. Due by 12:00pm (noon) on March 20, 2019.

From this assignment you can get a maximum of 20 points. The assignment contains a

list of problems, each worth a different number of points. You may choose any combination

of problems that you like. I recommend that you solve a combination of problems that is

worth more than 20 points as a way of gaining insurance against errors in some of your prob-

lem solutions. If you are submitting solutions to theoretical problems, feel free to hand-write

them and submit a scanned copy.

For problems 1 – 3, consider a scenario where covariates X are fully observed, and

outcome Y might be missing, with R representing its response indicator. Say that using

i.i.d. data {(Xi, Yi(Ri), Ri)}ni=1 you estimate the propensity score p(R = 1 | x) as π(x; ψ̂),

where ψ̂ is a vector of estimated parameters, e.g. using a logistic regression of R on X. We

will be assuming that R ⊥⊥ Y | X. Our goal is to estimate µ = E(Y ). Remember from

problem 11 of HW1 that the expected value of the complete case estimator of µ

µ̂cc =

∑n
i=1RiYi∑n
i=1Ri

is E(Y | R = 1), conditioning on at least one observed response. This means that µ̂cc

is generally biased for µ, and it motivates the usage of the inverse-probability weighted

estimator

µ̂ipw =
1

n

n∑
i=1

Ri

π(Xi; ψ̂)
Yi.

1. (5 points, skip if you are not familiar with consistency and convergence in probability)

Show that µ̂ipw is consistent for µ if π(x;ψ) is correctly specified, that is, if there exists

ψ∗ such that π(x;ψ∗) = p(R = 1 | x), and if the estimator ψ̂ consistently estimates ψ∗,

i.e., if ψ̂
p−→ ψ∗.
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2. (5 points, skip if you are not familiar with consistency and convergence in probability)

Now, additionally consider a conditional mean model m(x; ξ) for E(Y | x). The

augmented IPW (AIPW) estimator of the population mean is

µ̂aipw =
1

n

n∑
i=1

RiYi

π(Xi; ψ̂)
− 1

n

n∑
i=1

(Ri − π(Xi; ψ̂))

π(Xi; ψ̂)
m(Xi; ξ̂).

Show that if ψ̂
p−→ ψ∗ and ξ̂

p−→ ξ∗ then

µ̂aipw p−→ E

(
RY

π(X;ψ∗)
− (R− π(X;ψ∗))

π(X;ψ∗)
m(X; ξ∗)

)
.

(Note that for this problem we are not assuming that the propensity score and condi-

tional mean models are correctly specified).

3. (5 points) In the previous problem, we saw that as the sample size increases the esti-

mator µ̂aipw converges to the quantity

E

(
RY

π(X;ψ∗)
− (R− π(X;ψ∗))

π(X;ψ∗)
m(X; ξ∗)

)
.

Show that this can be rewriten as

µ+ EX

[
ER

(
(R− π(X;ψ∗))

π(X;ψ∗)
| X
)
EY (Y −m(X; ξ∗) | X)

]
and explain what happens if either the propensity score or the conditional mean models

are correctly specified, that is, if ψ∗ is such that π(x;ψ∗) = p(R = 1 | x) or if ξ∗ is such

that m(x; ξ∗) = E(Y | x).

For problems 4 – 9 consider a vector of measurements Z = (Y1, . . . , YT ) taken over T

time periods, and their response indicators (R1, . . . , RT ). We will work under dropout,

where Rj = 0 implies that Rj′ = 0 for all j′ > j. Let D be the dropout indicator, where

D = j + 1 indicates that the individual is last seen at time j.

4. (1 point) Write the formula for D in terms of the response indicators (R1, . . . , RT ).

5. (1 point) Denote the dropout hazard function as λj(Z) = p(D = j | D ≥ j, Z). Find

an equivalent expression for λj(Z) in terms of the response indicators (R1, . . . , RT ).
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6. (2 points) Show that p(D = j + 1 | Z) = λj+1(Z)
∏j

`=1[1− λ`(Z)]

7. (2 points) Show that p(Rj = 1 | Z) =
∏j

`=1[1− λ`(Z)]

8. (3 points) Show that the MAR assumption in this case is equivalent to assuming

λj(Z) = p(D = j | D ≥ j, Z)
MAR
= p(D = j | D ≥ j,Hj−1) = λj(Hj−1),

where Hj = (Y1, . . . , Yj).

9. (1 point) Explain how each λj(Hj−1) can be directly estimated from the observed data.

The following is a computational problem that builds on R session 4.

10. (10 points) One of the appeals of (weighted) generalized estimating equations is that

they lead to consistent estimators even when the working correlation matrix is mis-

specified (provided correct specification of the propensity score model and the marginal

response models for each time period). The goal of this problem is to explore this prop-

erty using the R package wgeesel. The idea is to run a simulation study where you

generate multiple datasets using the function data_sim under an exchangeable corre-

lation structure. For each of these datasets, use the function wgee to fit WGEEs with

correctly specified propensity score and marginal response models, but changing the

working correlation structure to exchangeable, AR1 and unstructured. Repeat your

simulation study under three different set-ups for the number of individuals: 100, 500,

and 2000. For other details on how to set-up your simulation study, follow the set-up

of the simulation of Section 4 in the wgeesel tutorial. Report your results in a table

similar to Table 2 of the wgeesel tutorial, and also submit your code.

The points obtained from problems 11 – 14 will be added to the score of any of your

previous homework solutions in which you obtained less than 20 points. They can also be

used towards the 20 points from this homework.

11. (1 point) Say we have a longitudinal study with dropout and T = 3. Write down the

neighboring-case identifying assumption for ` ≥ d, d = 1, 2, 3.
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12. (1 point) Say we have a longitudinal study with dropout and T = 3. Write down the

available-case identifying assumption for ` ≥ d, d = 1, 2, 3.

13. (1 point) Under monotone nonresponse (e.g., dropout), show that the available-case

identifying assumption is equivalent to MAR.

14. (1 point) Show that the full-data distributions obtained under the complete-case,

neighboring-case, and available-case identifying assumptions are observationally equiv-

alent (under dropout) and nonparametric identified.
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