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Previous Lectures

Approaches to handling missing data covered so far

» Ad-hoc approaches (imputation, complete cases)
> Not likelihood-based but we want to avoid them if possible

» Frequentist likelihood-based inference
» Estimation via the EM algorithm

» Bayesian inference
» Estimation via Gibbs sampling and data augmentation

» Multiple imputation

> Versions: proper, MICE (others not covered here)
» Congeniality requires being able to see overall procedure as
approximation to Bayesian model (prior + likelihood)

Generally speaking, the last three approaches require a parametric model
(likelihood function), either explicitly or implicitly



Today's Lecture!

> Inverse-probability weighting
> Origins in survey sampling
> Augmented inverse-probability weighting

» Double robustness

I Acknowledgment: today’s slides are partially based on materials developed by
Gary Chan
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Outline

Finite Populations and the Horvitz-Thompson Estimator
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Sampling from Finite Populations
Consider a finite population composed of N units
» We know a vector of design variables x; for each unit i =1,..., N

» We want to learn the mean of an unknown quantity in the
population (y1,...,¥n),

N
y=>_yi/N
i=1

» N is large, so measuring y; on every unit is not feasible

v

Idea: take a sample of units and measure y; on them

v

Remark: all x; and y; values are considered fixed quantities

> Example: every household i has a number y; that represents their
income last year; that number is fixed, regardless of whether the
value came to exist as the result of a random process
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Sampling from Finite Populations

» Denote R; = 1 if unit / is in the sample, 0 otherwise

» The random vector R = (Ry,. .., Ry) € {0,1}" indicates the units
included in the sample

v

A sample design is a joint probability distribution
p(R17"‘7RN | X17"'3XN)7

giving the probability of selecting each possible sample

v

The following two conditions need to hold:
> The probabilities of inclusion depend on the design variables x; only

p(Rl,...,RN|X1,...,XN,y1,...,yN):p(Rl,...7RN|X1,...7XN)

> Every unit has a positive probability of being selected
7T,'EP(R,'=1|X17...,XN) >0

» Note that the sample design and therefore the 7;'s are known!
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Sampling from Finite Populations
Examples of sample designs

» Simple random sample: every sample of size n has the same
probability of being selected, and therefore each unit has the same
probability of being selected

mi=n/N

» Stratified sample: say the x; design variables define J strata
S1,...,S; (e.g., different combinations of categorical variables)

» Randomly sample n;j units from the Nj; units in stratum j

> For a unit i € Sj, inclusion probability is:

n;
S
N
» Stratum proportion:
N;
Pi=
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Estimation of Mean in Finite Population
Want to estimate y
» Simple random sample:

N N N
}a/_l Ry—l Ri}/i_lZR:)/:
n&""""N n/N N & r;
i=1 i=1 i=1
» Stratified sample:
> First, compute sample means f/J in each stratum, j =1,...,J.

> Estimate y by taking a weighted average, weighting by strata
proportions
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The Horvitz-Thompson Estimator?

The above ideas can be generalized

> Suppose each unit is included in the sample with probability m; > 0,
m; being an arbitrary but known function of the design variables

2Second author was Donovan J. Thompson, former chair of UW Biostat!
https://www.jstor.org/stable/2280784
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The Horvitz-Thompson Estimator?

The above ideas can be generalized

> Suppose each unit is included in the sample with probability m; > 0,
m; being an arbitrary but known function of the design variables

» The Horvitz-Thompson estimator of the mean is

_ 1 Riyi
YHT:NZ 7Ti/

» Nowadays also called Inverse-Probability Weighted (IPW) estimator,
where R;/m; is seen as the weight of unit i in the sample

2Second author was Donovan J. Thompson, former chair of UW Biostat!
https://www.jstor.org/stable/2280784
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The Horvitz-Thompson Estimator

» The Horvitz-Thompson estimator is appealing because it is unbiased

Er(yuT) = Er ( Z Ry’)
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» The Horvitz-Thompson estimator is appealing because it is unbiased
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The Horvitz-Thompson Estimator

» The Horvitz-Thompson estimator is appealing because it is unbiased

1Y Riy;
Ex(y —E- | = A
o) = (7 22

N
. 1 ER(R,)y,
o N; i
N
_1 3 P(Ri=1|x1,...,xn)yi
N v

> In survey sampling the randomization-based approach to inference is
mainstream, under which the only thing that is random is the
sample selection (the R;'s)

» Take a course on survey sampling to learn more about this!
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Basu's Elephant

Many people criticize the Horvitz-Thompson estimator, in particular
Debabrata Basu (1971): An essay on the logical foundations of survey
sampling, Part |.

>

Circus owner planning to ship 50 elephants and needs an estimate of
the total weight

She plans to weight just one elephant: Sambo, the middle-sized
elephant, and take 50ysambo (Vsambo is the weight of Sambo) to be
an estimate of the total weight

Circus' statistician is horrified because the circus owner gives 0
probability for sampling other elephants

Statistician developed the following plan: 99% prob. of selecting
Sambo; and equal probability to each of other 49 elephants

As expected, Sambo is selected so the owner should be happy
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Basu's Elephant

» Circus owner asked if the estimated total weight is 50ys,mpo Since
Sambo was sampled

» Statistician said no; IPW estimate is
0 L Ly, 10
50 0.99y53mbo ~ 99 YSambo

v

Owner asked what if the largest elephant, Jumbo, had been selected

v

Statistician answered: IPW estimate would be

1 1

50 55 > 0.01/49

YJumbo = 4'900}/Jumbo

v

The statistician was immediately fired!
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Basu's Elephant

v

What's going on with Basu'’s elephant example?

v

Sample size is too small

v

Selection probabilities are too extreme

v

Huge standard error by having such extreme selection probabilities

v

Over repeated samples, the average estimate is close to the truth,
but each estimate can be far off
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Inverse-Probability Weighting in Infinite Populations
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Infinite Population Set-Up

The usual set-up in this class consists of an infinite population
represented by the joint distribution of a vector of random variables. In
particular today we will consider:

» X: vector of always observed random variables
» Y: random variable subject to nonresponse
» R: indicator of whether Y is observed

» Note that the infinite population is the full-data distribution with
density
p(x,y,r) = p(x, y)p(r | x,y)

» The data are n i.i.d. copies of (X, Yg, R)



Infinite Population Set-Up

» Say we want to estimate the mean of Y

p=E(Y)= /yp(y)dy

» Assume MAR, which in thiscaseis R 1L Y | X

» Define the propensity score to be

7(x) = p(R=1] x)
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Inverse-Probability Weighting

» The inverse-probability weighted (IPW) estimator of the mean is
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Inverse-Probability Weighting

> The inverse-probability weighted (IPW) estimator of the mean is
; I R
nipw0 = 'y,
. n ; (X))

» Which, again, is unbiased

ZE(( X))
_i;Ex,. ER,-,Y,-<7TRi i ,>)

17 /27



Inverse-Probability Weighting

» Unlike in the context of a well-designed survey, m(x) is unknown and
needs to be estimated
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Inverse-Probability Weighting

» Unlike in the context of a well-designed survey, m(x) is unknown and
needs to be estimated

» Estimate the propensity scores as 7(x; ’(/’;) e.g. using a logistic
regression, and use

> This estimator is consistent if 7(x; 1)) is correctly specified HW4

> IPW was re-introduced by James Robins, Andrea Rotnitzky and Lue
Ping Zhao (JASA, 1994)3 for parameter estimation in
semiparametric models

Shttps://wuw.jstor.org/stable/2290910
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Augmented Inverse-Probability Weighting
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Augmented IPW
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IPW is straightforward to implement but can be quite inefficient
(uses only complete cases)

Consistency of IPW relies on the correctness of model assumptions
for missing data mechanism (propensity score)

The augmented IPW (AIPW) estimator of the population mean is

1% n ; ﬂ'(Xi;fL/)A) n ; 7T(Xi;1/l;) m(lef)

where m(x; £) is an estimate of E(Y | x) among the complete cases,

since under MAR E(Y | x)=E(Y | x,R=1)

AIPW estimators were introduced by Robins, Rotnitzky and Zhao
(1994)

In the survey sampling world these are called model-assisted survey
estimators (Sarndal, Swensson and Wretman, 1992, Springer)
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Augmented IPW

» AIPW usually has a smaller standard error than IPW

» AIPW enjoys a double robustness property: it is consistent for p if
either
> The propensity score model 7(x; ) is correctly specified
> The conditional mean model m(x; &) is correctly specified

» HW4: show that if P —2 ¢* and € -2 £* then
RY (R —7(X;¢*))

P E <7r(X;1/)*) o w(Xy) m(X;f*))

» HWA4: show that the above expression can be written as
(R —m(X;v*)) .

Ex |Er | ———————+= | X | Ey(Y — m(X; X

o+ x[R( (X 0% | v( m(X; &%) | X)

v

We conclude that 12 -5 1, when either
» m(X;y") =p(R=1]|X)
» m(X;¢") = E(Y | X)



Are Two Models Better Than One?*

I Statistics, 2007

Demystifying Double Robustness:

A Comparison of Alternative Strategies for
Estimating a Population Mean from
Incomplete Data’

Joseph D. Y. Kang and Joseph L. Schafer

Abstract.  When outcomes are missing for reasons beyond an investigator’s
control, there are two different ways to adjust a parameter estimate for co-
variates that may be related both to the outcome and to missingness. One
approach is to model the relationships between the covariates and the out-
come and use those relationships to predict the missing values. Another is
to model the probabilities of missingness given the covariates and incorpo-
rate them into a weighted or stratified estimate. Doubly robust (DR) proce-
dures apply both types of model simultaneously and produce a consistent
estimate of the parameter if either of the two models has been correctly spec-
ified. In this article, we show that DR estimates can be constructed in many
ways. We compare the performance of various DR and non-DR estimates of
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Simulation Studies of Kang and Schafer

The authors used extensive simulation scenarios to evaluate different
estimators

Simulation scenarios resemble a quasi-experiment to measure the
effect of dieting on body mass index (BMI) in a large sample of
high-school students

At baseline, covariates measured include BMI, self-perceived physical
fitness, social acceptance and personality measures

Outcome is BMI in 1 year, which may be missing

Response bias is moderate, good overlap between the missing and
non-missing

Good predictors of the outcomes are available, R? = 0.81

Both models are approximately but not exactly true
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Some Conclusions of Kang and Schafer

» “Methods that use inverse-probabilities as weights, whether they are
DR [double robust] or not, are sensitive to misspecification of the
propensity model when some estimated propensities are small'

» “Many DR methods perform better than simple inverse-probability
weighting’

» “None of the DR methods we tried, however, improved upon the
performance of simple regression-based prediction of the missing
values’

> “This study does not represent every missing-data problem that will
arise in practice. But it does demonstrate that, in at least some
settings, two wrong models are not better than one’
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Stabilizing Weights

» What is happening? Similar to Basu's elephant: weights R;/7(X;; 1))
are too unstable

v

Under the true m-model, the weights are expected to be 1:

() = ("0 ) -

v

Therefore, when the model is correctly specified,

1o R
C:fE —~~1
n,':1 W(X;;L/J)

» However, when the model is misspecified, often C >> 1

~

Define the inverse of 7; = Cm(X;; 1) as the stabilizing weight, so
that

v

n
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Summary
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Summary

Main take-aways from today's lecture:

> Inverse-probability weighting
> Origins in survey sampling (Horvitz-Thompson estimator)
> Does not require modeling of the full-data distribution
» Sensitive to misspecification of the propensity score model and to
extreme weights

» Augmented IPW

> Enjoys double-robustness property
> However “in at least some settings, two wrong models are not better
than one’ (Kang and Schafer, 2007)

Next lecture:

» Weighted Generalized Estimating Equations
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