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Previous Lectures

Naive/ad-hoc approaches to handling missing data:

» Complete-case analyses are wasteful and potentially invalid unless
MCAR holds

» Imputation methods might be valid for some quantities under
MCAR, but:
> Variances are underestimated = overconfidence in your results!
> Invalid results for other quantities, induced biases are not clear!

» R session 1:
> Simulation study showed mean imputation leads to:
> Invalid inferences on regression coefficients
> Underestimation of variances
» R package VIM implements variants of hot-deck imputation
> Open question: performance of bootstrap + imputation?



Today's Lecture

Likelihood-based approaches
» General set-up for maximum likelihood estimation
» How did Rubin come up with the MAR assumption?
» The concept of ignorability

Reading: pages 50 — 61, Ch. 3, of Davidian and Tsiatis



Outline

Review of Maximum Likelihood Estimation



Parametric Models

> Z=(2Z,...,Zk): generic vector of study variables

v

Thus far we have written p(z) to represent the probability density
function of the distribution of Z

» We now work under a parametric model for the distribution of Z

{p(z10)}e,
with 6 = (91, 92, e ,Hd)

v

Model written as {p(z; #)}s in Davidian and Tsiatis (philosophical
difference)



Example of Parametric Model: Bivariate Normal

Suppose that Y = (Y3, Y2)T is bivariate normal

012 03

T U% 012
Y~ N X)), p=(p1, p2)’, L= R

The probability density of Y is

ply | 6) = 1|1/2e><p{ (y =) "= My — m)/2},
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where 0 = (u1, o1, po, 03, 012)'.
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Our Typical, Idealized Sampling Process

> In practice, we have data z;, foreach i=1,...,n

» We imagine that z; = (z1,...,zi) is a realization of a random
vector Z; = (Z,'l, R Z,'K)

> All random vectors {Z;}7_, follow the same distribution and are
independent of each other — independent and identically distributed

(i.i.d. or 1ID)

» Under our parametric model, the joint distribution of {Z;}"_; has a

density function
HP(Zi | 0)
i=1



Maximum Likelihood Estimation

» The likelihood function is defined as
n
L) =[] p(z | 0),
i=1

seen as a function of 0

» The maximum likelihood estimator (MLE) is the value f that
maximizes L(6)

0 = argmax L(0) = argmax log L(0)
0 0

> We take the log because it is usually easier to work with
log L(6) = > log p(z | 6)
i=1

and it leads to the same maximizer



Finding the MLE

» Under some regularity conditions, the MLE is the solution to the
score equations

n n 8
ZS@(Z,'; 0) = Z 20 logp(z; | 6) =0
i=1 i=1

» Where the score vector

2 logp(z | 0)
2 logp(z | 0)

0
So(z;0) = 2 logp(z | 0) =

9= log p(z | 0)

» Solving the score equations might require iterative methods, such as
Newton—Raphson
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Why MLEs?

Under regularity conditions, including that the model is correctly

specified, i.e., there really exists 6y such that p(z | 8p) is the true density:

» The MLE is a consistent estimator: § — 0o
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» The MLE is a consistent estimator: § — 0o
> We know the MLE's asymptotic distribution:
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where Z(0) is Fisher's information matrix
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Why MLEs?

Under regularity conditions, including that the model is correctly

specified, i.e., there really exists 6y such that p(z | 8p) is the true density:

» The MLE is a consistent estimator: § — 0o

> We know the MLE's asymptotic distribution:
V(0 — o) = N(0,Z(60) ),

where Z(0) is Fisher's information matrix

2

ae%eT log p(Z | 0)| = E [Se(Z;0)Se(Z;6)7]

7(0) =

> Z(0o) is unknown, but Z(d) -2 Z(6,)

» Heuristically, we say

0 ~ N (60, Z(9)1/n)



Why MLEs?

» Sometimes, computing Z(#) can be complicated, so we might
instead use the observed information matrix

n 82
J(0) = —Z 90007 log p(zi | 0)
i=1
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instead use the observed information matrix

n 82
J(0) = —Z 90007 log p(zi | 0)
i=1

> We have that n=1J(A) -2 Z(6,)
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components of 6 and to compute approximately valid confidence
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Why MLEs?

» Sometimes, computing Z(#) can be complicated, so we might
instead use the observed information matrix

n 82
J(0) = —Z 90007 log p(zi | 0)
i=1

> We have that n=1J(A) -2 Z(6,)

» Therefore, we heuristically say

0~ N(bo,J(H)7Y)

» This can be used for approximating standard errors for the
components of 6 and to compute approximately valid confidence
intervals

» What if we have missing data? Our observed data are realizations of
(Z(r), R), not realizations of Z!

11/34



Outline

Likelihood-Based Set-Up with Missing Data
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Factorizations of the Full-Data Distribution
Full-data distribution: joint distribution of (Z, R), with density

p(z,r)

Not accessible to us, mere humans, even with infinite samples, but we
know it can be factorized in different ways
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p(z,r) = p(r|z)p(2)
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complete data, say p(z | 6)
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Factorizations of the Full-Data Distribution
Full-data distribution: joint distribution of (Z, R), with density

p(z,r)

Not accessible to us, mere humans, even with infinite samples, but we
know it can be factorized in different ways

» Selection model factorization:

p(z,r) = p(r | 2)p(2)

> p(z) can come from the parametric model we would use if we had
complete data, say p(z | 6)

> p(r| z) can come from a model for the response mechanism,

p(r|z,v)

» Other factorizations are important and lead to alternative
approaches for handling missing data, but they will be covered later
in the course

13 /34



Parametric Models

» Consider a parametric family for the marginal distribution of Z

{p(z10)}0,
and for the response mechanism
{p(r|z4)}y
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Parametric Models

» Consider a parametric family for the marginal distribution of Z

{p(z ] 0)}e,

and for the response mechanism

{p(r|z¢)}y

» We assume separability of 6 and 1: knowledge on the value of 6
says nothing about the value of v, and vice versa

> All combinations of values of § and v are possible

> The range of values of 0 is the same regardless of v, and vice versa

14 /34



Full-Data Sample

In the full-data world:
» Study variables for individual i: Z; = (Zq,. .., Zik)
» Response indicators for individual i: R; = (Ri1, ..., Rik)
> {(Z;, Ri)}_; are independent and identically distributed

» The realized values are {(z;, r;)}7_,
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In the full-data world:
» Study variables for individual i: Z; = (Zq,. .., Zik)

» Response indicators for individual i: R; = (Ri1, ..., Rik)

v

{(Z;, Ri)}_; are independent and identically distributed

v

The realized values are {(z;, r;)}"_;

This leads to a full-data likelihood function

v

quII0 rlzb HP rl|zl; ZI|0)
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Full-Data Sample

In the full-data world:
» Study variables for individual i: Z; = (Zq,. .., Zik)

» Response indicators for individual i: R; = (Ri1, ..., Rik)

v

{(Z;, Ri)}_; are independent and identically distributed

v

The realized values are {(z;, r;)}"_;

This leads to a full-data likelihood function

v

Len(0,v) = HP ri | zi,Y)p(zi | 0)

Clearly, we cannot work with Lg;(0,1), as it depends on missing datal!
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The Observed-Data Distribution

As mentioned in Lecture 2, given that R is random, the observed data
are obtained as realizations of

(Z(R)v R)
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The Observed-Data Distribution

As mentioned in Lecture 2, given that R is random, the observed data
are obtained as realizations of

(Z(R)v R)

We can think of the generative process

The distribution of (Z(ry, R) is referred to as the observed-data
distribution, and it has a probability density denoted by

p(zr), 1)

16
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The Observed-Data Distribution

To derive p(z,), r), we need to integrate p(z, r) over the possible missing
values z), denoted Z7

Pz, ) = / plz, ) 1(dz)
20
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The Observed-Data Distribution

To derive p(z,), r), we need to integrate p(z, r) over the possible missing
values z), denoted Z7

P(Z(r)’ r)= /Z p(zr) U(dZ(F))
(7)
_ / p(r | 2)p(2) u(dz)
(F)

fz (r]z)p(z|0)dzr if Zis continuous
Zz p(r|z,¥)p(z]0) if Z is discrete
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The Observed-Data Distribution

To derive p(z,), r), we need to integrate p(z, r) over the possible missing
values z), denoted Z7

P(Z(r)’ r)= /Z p(zr) U(dZ(F))
(7)
_ / p(r | 2)p(2) u(dz)
(F)

fz (r|zv¥)p(z|0)dzz if Zis continuous
sz p(r|z,¢)p(z|8) if Z is discrete

From now on, we'll write fz(f) p(z, r)dzg instead of fz(f) p(z, r)u(dzr)
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Example of Observed-Data Distribution

HW2: problem 6 of HW1 continued: say K =2, Z; € {1,2},
Z € {A, B}, R {0,1}2

> Write down all the elements of the sample space of (Z(r), R)
» Say the full-data probability density is given by
p(27 f) = P(Zl’ 3,1, r2) = 7Tzl,zz,rl,rz

Derive p(z(,, r) for all elements (z), r) in the sample space of
(Z(R)7 R)



Example of Observed-Data Distribution

HW2: say K =2, (Z1,2)" ~ N(p, Z), R € {0,1}2.
> Describe the sample space of (Z(r), R) (problem 7 of HW1)

> Say p(r | z) = p(r). Derive p(zy, r) for all r € {0,1}?

19/34



Example of Observed-Data Distribution

HW2: say K =2, (Z1,2)" ~N(u,X), R € {0,1}2.
> Describe the sample space of (Z(r), R) (problem 7 of HW1)
> Say p(r | z) = p(r). Derive p(zy, r) for all r € {0,1}?
» Say Ry L Ry | Z,
logit p(R; = 1| z) = Bjo + Bjrz1 + Bjoze, j=1,2.

Derive p(zy, r) for all r € {0,1}?
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Likelihood-Based Set-Up

» The random sample we are actually working with is

{(Zi(ry, Ri)}iea
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Likelihood-Based Set-Up

» The random sample we are actually working with is

{(Zi(ry, Ri)}iea

» The realized values are actually

{Gitnys i)} s

> As before, we can think of the generative process, for each /:

Zi = R = (Zir)R)

» What is the observed-data likelihood function?



Likelihood-Based Set-Up

» The random sample we are actually working with is

{(Zi(ry, Ri)}iea

v

The realized values are actually

{Gitnys i)} s

v

As before, we can think of the generative process, for each i:

Zi = R = (Zir)R)

What is the observed-data likelihood function?

v

> We need to integrate the full-data likelihood Lg, (6, ) over the
possible values of each z;()

i



Likelihood-Based Set-Up

> Since we are assuming i.i.d. data, let's focus on a generic term of
the full-data likelihood

Lan(0,9) = p(r | z,¢)p(z | 0)

to facilitate the notation
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through the specification of p(r | z, )



Likelihood-Based Set-Up

> Since we are assuming i.i.d. data, let's focus on a generic term of
the full-data likelihood

Lan(0,9) = p(r | z,¢)p(z | 0)

to facilitate the notation

» We cannot work with £g,;(6, 1)) since we don't observe a complete
realization z, but rather Z(r)

> We need to integrate over the missing data to derive the
observed-data likelihood

Cons(6,00) = L p(r | 2,0)p(2 | 6) dz)

@
> Lops(0, 1)) does not depend on missing data

» To obtain likelihood-based inferences on 6, it seems we need to pass
through the specification of p(r | z, )

» Typically, p(r | z,%) is not of scientific interest so it can be seen as
a nuisance



Developing the Missing at Random (MAR) Assumption

Rubin’s (1976, Biometrika) fundamental motivation:

» How can we get rid of this nuisance p(r | z,4)?
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Developing the Missing at Random (MAR) Assumption

Rubin’s (1976, Biometrika) fundamental motivation:
» How can we get rid of this nuisance p(r | z,4)?
» When are inferences for 6 based on fz(») p(z | 0) dz valid?

Stare at the observed-data likelihood:

to(0.0) = [ plr | 2.0)p(z 1 0) dtp

()



The Missing at Random (MAR) Assumption

The MAR assumption, in terms of p(r | z, 1) says
p(r|z,4) = p(r |z, ¥)

(we'll soon talk about the formal definition)



lgnorability Under MAR

» Under the MAR assumption:

zobs(evw) :/ p(r | Z7w)p(z | 9) dZ(F)
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lgnorability Under MAR

» Under the MAR assumption:
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lgnorability Under MAR

» Under the MAR assumption:

gobs(evw) :/ p(r | Z7w)p(z l 9) dZ(F)

Z(p)

MAR
A /Z p(r | 20y, 9)p(z | 6) e
(7)

= p(r | Z(,),l/J)/ p(z10) dz(r

2
= p(r | z(r)v¢) p(z(r) ‘ 9)

» Under MAR, likelihood-based inference can be based on

Cons(0) = plz) | 0) = /Z p(z | 0) dzgr
()

» Missingness mechanism is ignorable since there's no need to specify
p(r | z,%) if we only care about 6



lgnorability

From Little & Rubin (2002, Definition 6.4):

The missing-data mechanism is ignorable for likelihood inference if:
(a) MAR holds

(b) The parameters 0 and ¢ are separable



Maximum-Likelihood Estimation

The MLE for 6 is obtained from maximizing

Lops(60,1) = H / 1| 2 0)p(z | 0) daziry
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Maximum-Likelihood Estimation

The MLE for 6 is obtained from maximizing

Lobs(0,7) = H/ p(ri | zi,)p(zi | 0) dzj(r)

MAR [H p(ri | z,-(r,-)7¢)] [H/ p(zi | 0) dz,-(,—,.)]
pale i=17 2@

Can be ignored Provides MLE of § under MAR
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> It might be difficult to work with these expressions, even under
MAR; the EM algorithm might help! (next class)
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Maximum-Likelihood Estimation

The MLE for 6 is obtained from maximizing

Lobs(0,7) = H/ p(ri | zi,)p(zi | 0) dzj(r)

MAR [H p(ri | z,-(r,-)7¢)] [H/ p(zi | 0) dz,-(,—,.)]
pale i=17 2@

Can be ignored Provides MLE of § under MAR

> It might be difficult to work with these expressions, even under
MAR; the EM algorithm might help! (next class)

» Note that the MLE is the same whether we assume MAR, MCAR, or
anything that satisfies ignorability!
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Observed-Data Score Vector and Fisher Information

» Davidian and Tsiatis, in pages 60—61, present expressions equivalent
to the following
» The score vector
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» The observed-information matrix

J(0) = Z aaaaT log p(zi(s, | 6)
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Observed-Data Score Vector and Fisher Information

» Davidian and Tsiatis, in pages 60—61, present expressions equivalent
to the following
» The score vector

0
So(r,zp; 0) = 20 log p(z) | )

» The Fisher's information matrix
7(0) = - [aew 108 p(Z(e) | 6)

» The observed-information matrix

J(0) = Z aeaaT log p(zi(s, | 6)

» Davidian and Tsiatis provide alternative expressions for these
quantities that require some algebraic manipulations (check on your
own)

> Note that while we can ignore p(r | z,1) to compute the MLE,
the expectation to obtain Z(0) is over (R, Z(r))

> If response mechanism is not ignorable, these quantities need to be
derived from Lgps(6,1))!



Outline

Rubin’s Original MAR Assumption
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Discussion on What the MAR Assumption Says

» Rubin (1976, Biometrika) introduced a slightly different the idea of
MAR

> People use and understand something else — the difference is subtle

» Does it matter?
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The Original MAR Assumption
Rubin (1976, Biometrika):
> r: response indicators for your entire dataset, realized, fixed

> z(): observed values for entire dataset, realized, fixed
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The Original MAR Assumption

Rubin (1976, Biometrika):

>

| 2

r: response indicators for your entire dataset, realized, fixed
2(;): observed values for entire dataset, realized, fixed

Rubin’s original definition says:

Missing data z@) are MAR if

p(r | 2y, 2r), ) = P(r | 2(r): 25y, B)

for all possible values z(), z&) and ¢

This doesn't say anything about other ¥’ # r or other er) # 2z

It's an assumption on the probability of observing what | observed,

not about what | could have observed



Example: the Original MAR Assumption

Example: let's say | try to measure Gender, Age, and Income on two
individuals

31/34



Example: the Original MAR Assumption

Example: let's say | try to measure Gender, Age, and Income on two
individuals

> n = 110, zZ] = (F,29, 100K), rn = 010, Zy = (M740780K)

31/34



Example: the Original MAR Assumption
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Example: the Original MAR Assumption

Example: let's say | try to measure Gender, Age, and Income on two
individuals

» =110, z =(F,29,100K), r, =010, 2z =(M,40,80K)
> Missing data:  zy(5) = (100K),  z5) = (M, 80K)
> In Rubin’s original definition, the missing data are MAR if

p(R1 =110,R, =010 | Z; = (F,29,100K), Z, = (M, 40,80K)) =

p(Rl = 110, R2 =010 ‘ Zl = (F729,a)722 = (b, 40, C))7

for any values of a, b, ¢
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Example: the Original MAR Assumption

Example: let's say | try to measure Gender, Age, and Income on two
individuals

» =110, z =(F,29,100K), r, =010, 2z =(M,40,80K)
> Missing data:  zy(5) = (100K),  z5) = (M, 80K)
> In Rubin’s original definition, the missing data are MAR if
p(Ry =110,R, =010 | Z; = (F,29,100K), Z, = (M, 40,80K)) =
p(R1=110,R, =010 | Zy = (F, 29, a), Z, = (b,40,¢)),
for any values of a, b, ¢
» Rubin's original MAR assumption doesn’t say anything about
p(Ri=r,R=1| 2,2)

for rf # 110, or r} # 010, or 2}, # (F,29) or z},,, # (40)
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» However, we don't really use the original definition of MAR; for
example, nobody says “/ will assume MAR if | obtain r and z(y), but
not if | obtain v’ or ZEr)”



The MAR Assumption Today

| 2

Today, most authors interpret the MAR assumption as
p(r | Z(r), Z(7), o) = p(r| Z(r)»sz), ?)
for all possible values r, z(), @), zEF) and ¢
» Equivalently,

p(r|z,¢) = p(r|zw), ¢)

for all possible values r, z, and ¢

Mealli & Rubin (2015, Biometrika) call this missing always at
random — MAAR (see also Seaman et al. (2013, Stat. Sci.))

However, we don't really use the original definition of MAR; for
example, nobody says “/ will assume MAR if | obtain r and z(y), but
not if | obtain v’ or ZEr)”

Here we'll use the common interpretation of MAR (MAAR). With
i.i.d. data, it corresponds to assuming

p(r ‘ 27¢) = p(r ‘ Z(r)7¢)a

for a generic observation, for all possible values r, z, and ¢
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Summary

Main take-aways from today’s lecture:

> In general, likelihood-based inference requires positing a model for
the study variables and for the response mechanism

» Under ignorability (MAR + separability), we don't need to explicitly
write the response mechanism

» Original MAR definition has mutated over the years



Summary

Main take-aways from today’s lecture:

> In general, likelihood-based inference requires positing a model for
the study variables and for the response mechanism

» Under ignorability (MAR + separability), we don't need to explicitly
write the response mechanism

» Original MAR definition has mutated over the years

Next lecture:

» The EM algorithm!
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