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Previous Lecture

p(y)︸︷︷︸
what we want

= p(y | R = 0)p(R = 0) + p(y | R = 1)︸ ︷︷ ︸
what we can get

p(R = 1)

We cannot recover p(y | R = 0) nor p(y) from observed data alone

The fundamental problem of inference with missing data: it is impossible
without extra, usually untestable, assumptions on how missingness arises
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Today’s Lecture

I General setup, notation

I Missing-data mechanisms

Reading: pages 14 – 22, Ch. 1, of Davidian and Tsiatis
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Outline

Notation

Missing-Data Mechanisms
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Study Variables and Response Indicators
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Study Variables and Response Indicators

I Z = (Z1, . . . ,ZK ): the study variables, or the variables that we
intend to measure on each individual

I Each Zk , k = 1, . . . ,K , is a block of variables that are jointly
missing/observed

I R = (R1, . . . ,RK ): the response indicators

I Each Rk , k = 1, . . . ,K , is an indicator of whether Zk is observed

Rk =

{
1 if Zk is observed,

0 if Zk is missing.
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Sample Data

For each individual i = 1, . . . , n, we define

I Study variables: Zi = (Zi1, . . . ,ZiK )

I Response indicators: Ri = (Ri1, . . . ,RiK )
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Sample Data

I We assume the full sample are independent and identically
distributed (i.i.d.) draws

{(Zi ,Ri )}ni=1
i.i.d.∼ F

from some distribution F

I Of course, this an idealized scenario: we typically cannot fully
observe Zi

I In this lecture, we delete the subindex i to talk about a generic draw
from F
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Response and Missingness Patterns

I Each of the components of Z can either be missing or observed, so
in general

R = (R1, . . . ,RK ) ∈ {0, 1}K

Example: if K = 2, {0, 1}2 = {(0, 0), (1, 0), (0, 1), (1, 1)}

I r = (r1, . . . , rK ): generic element of {0, 1}K , a response pattern

I Sometimes we write r as a string r = r1 . . . rK

I e.g., r = (0, 1, 0) ≡ 010

I R̄ = (1− R1, . . . , 1− RK ): the missingness indicators

I r̄ : generic value of R̄, a missingness pattern
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Notation Example: Regression
Say

Z = (Y ,X ) = (Y ,X1, . . . ,Xp)

where Y is a response, and X are covariates

I Say only the outcome Y can be missing, then

I Z = (Z1,Z2), Z1 = Y , Z2 = X

I R = (R1,R2) ∈ {(0, 1), (1, 1)}
I Alternatively, we could define R ∈ {0, 1}, R = 1 if Y is observed

I Say outcome Y and covariates X can be missing (all covariates at
the same time), then

I Z = (Z1,Z2), Z1 = Y , Z2 = X

I R = (R1,R2) ∈ {0, 1}2

I Say outcome Y and individual covariates X1, . . . ,Xp can be missing
(regardless of the missing status of others), then

I Z = (Z1,Z2, . . . ,Zp+1), Z1 = Y , Z2 = X1, . . . , Zp+1 = Xp

I R = (R1, . . . ,Rp+1) ∈ {0, 1}p+1
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Notation Example: Longitudinal Study

Study participants’ characteristics are to be measured at T times

I Zj : measurements taken at time tj

I Rj : indicator of whether participant shows up at time tj

I If missingness only comes from subjects dropping out

I Drop out at time tj : Z1, . . . ,Zj−1 observed; Zj , . . . ,ZT not observed

I R = (R1, . . . ,RT ) ∈ {(1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, . . . , 1)}
I Can be uniquely summarized by the drop out time D = 1 +

∑T
j=1 Rj

I If participants sporadically show up
I R = (R1, . . . ,RT ) ∈ {0, 1}T
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Missing and Observed Data

Given R = r

I Z(r): observed values

I Z(r̄): missing values

Example:

I Z = (Z1,Z2,Z3)

I If r = 010, Z(r) = Z(010) = Z2, and Z(r̄) = Z(101) = (Z1,Z3)

HW1: write down Z(r) and Z(r̄) for all possible values of r ∈ {0, 1}3
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Observed Data

Given that R is random, the observed data are obtained as realizations of

(Z(R),R)

We can think of the generative process

Z =⇒ R =⇒ (Z(R),R)

I HW1: explain what is the difference between (Z(R),R) and
(Z(r),R = r) for a fixed value r

I HW1:

a) say Z = (Z1,Z2), Z1 ∈ {1, 2}, Z2 ∈ {A,B}, R ∈ {0, 1}2. Write down
all the elements of the sample space of (Z(R),R).

b) Describe the sample space of (Z(R),R) if instead Z ∈ R2.
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The (Zobs ,Zmis) Notation

I To formally characterize the observed data we need to use the
response vector R

I Yet, a large portion of the literature on missing data define the
observed and missing data as

Z = (Zobs ,Zmis)

I Zobs : observed values, so “Zobs = Z(R)”

I Zmis : missing values, so “Zmis = Z(R̄)”

I This notation is convenient for its simplicity, but in this course we
avoid it, as Zobs and Zmis do not explicitly indicate how they relate
to R

14 / 37



Notation Example: Longitudinal Study

If missingness comes only from subjects dropping out

I Missingness patterns are uniquely summarized by the drop out time
D = 1 +

∑T
j=1 Rj

I The observed data are obtained as realizations of

(Z(D),D)

where, if D = d , Z(d) = (Z1, . . . ,Zd−1)
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Distributions of Interest

I Full-data distribution: joint distribution of (Z ,R)

I Density: p(z , r) = p(z | r)p(r) = p(r | z)p(z)

I Davidian and Tsiatis refer to the distribution of Z as the full-data
distribution, but R is also data!

I Missing-data mechanism or missingness mechanism: conditional
distribution of R | Z

I Density: p(r | z)
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Notation for Density Functions

For simplicity we use p(·) for technically different functions

I p(z) ≡ pZ (z)

I p(z , r) ≡ pZ ,R(z , r)

I p(r | z) ≡ pR|Z (r | z)

Interpretations should be clear from the arguments passed to them
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Outline

Notation

Missing-Data Mechanisms
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Missing-Data Mechanisms: A Bit of History
I Missing data was largely seen as a computational issue: “these holes

in the data don’t let me run my analysis”

I The inferential complications induced by missing data were first
addressed in a seminal paper by Rubin (1976, Biometrika)

I Prior to this, some authors had ways of “ignoring” the missing data,
but no formal treatment of the missingness mechanism existed

I The definitions that Rubin introduced have evolved: see lectures on
likelihood-based inference
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Missing-Data Mechanisms: Warning

We’ll introduce the classification of missing-data mechanisms as they are
commonly interpreted, and as presented by Davidian and Tsiatis

However, as we’ll see in the lectures on likelihood-based inference, this is
not exactly the interpretation that Rubin intended
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Missing-Data Mechanisms: Missing Completely at Random

Data are said to be missing completely at random (MCAR) if

p(R = r | z) = p(R = r)

Interpreted as

I R ⊥⊥ Z (R and Z are independent)

I Missingness has nothing to do with the study variables
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Missing-Data Mechanisms: Missing Completely at Random

MCAR: p(R = r | z) = p(R = r)

Example:

let’s say Z = (Sex ,Age, Income)

I Say r = 110,

p(R = 110 | M, 25, 10K) = p(R = 110 | F , 70, 60K) = p(R = 110)

I Same for all other response patterns r

I We conclude
R ⊥⊥ (Sex ,Age, Income)
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Missing-Data Mechanisms: Missing at Random

Data are said to be missing at random (MAR) if

p(R = r | z) = p(R = r | z(r))

Interpreted as

I The probability of a response pattern does not depend on the
missing data

I The probability of response pattern r as a function of z is constant
on z(r̄)

23 / 37



Missing-Data Mechanisms: Missing at Random
MAR: p(R = r | z) = p(R = r | z(r))

Example:

let’s say Z = (Sex ,Age, Income), and only income can be missing

I If r = 110,

p(R = 110 | z) = p(R = 110 | z(110)) = p(R = 110 | Sex ,Age)

I If r = 111,

p(R = 111 | z) = p(R = 111 | z(111)) = p(R = 111 | Sex ,Age, Income)

I However, since only income can be missing,

p(R = 111 | z) = 1− p(R = 110 | z)

I Therefore p(R = 111 | z) = p(R = 111 | Sex ,Age) and we conclude

R ⊥⊥ Income | Sex ,Age

I (Here we could simply define R as the indicator of missingness for Income)
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Missing-Data Mechanisms: Missing at Random
MAR: p(R = r | z) = p(R = r | z(r))

Example:

let’s say Z = (Sex ,Age, Income), and any missingness pattern is possible

I If r = 110,

p(R = 110 | z) = p(R = 110 | z(110)) = p(R = 110 | Sex ,Age)

I If r = 111,

p(R = 111 | z) = p(R = 111 | z(111)) = p(R = 111 | Sex ,Age, Income)

I If r = 001,

p(R = 001 | z) = p(R = 001 | z(001)) = p(R = 001 | Income)

I If r = 000,

p(R = 000 | z) = p(R = 000 | z(000)) = p(R = 000)

I How do you like this as an assumption?
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Missing-Data Mechanisms: Missing at Random

MAR: p(R = r | z) = p(R = r | z(r))

Example: say Z = (Z1,Z2), (R1,R2) ∈ {0, 1}2

I p(R1 = 0,R2 = 0 | Z1 = z1,Z2 = z2) = f00

I p(R1 = 1,R2 = 0 | Z1 = z1,Z2 = z2) = f10(z1)

I p(R1 = 0,R2 = 1 | Z1 = z1,Z2 = z2) = f01(z2)

I p(R1 = 1,R2 = 1 | Z1 = z1,Z2 = z2) = 1− f00 − f10(z1)− f01(z2)

So MAR in general is NOT a conditional independence statement!
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Missing-Data Mechanisms: Missing Not at Random

Data are said to be missing not at random (MNAR) if

p(R = r | z) 6= p(R = r | z(r))

I Quite literally, anything that cannot be written as MAR

I The probability of observing r depends on the components of Z not
observed when R = r

I Probably the most realistic scenario, and the most difficult to handle
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A Toy Example

I Y ∈ {0, 1}: indicates presence of a feature, sometimes missing

I X ∈ {A,B}: population groups, always observed

I R ∈ {0, 1}: response indicator for Y
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A Toy Example: Full Data

p(R = 1 | x , y) = 1
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A Toy Example: Missing Completely at Random

p(R = 1 | x , y) = p(R = 1) = 0.8
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A Toy Example: Missing at Random

p(R = 1 | x , y) = p(R = 1 | x) = 0.8I (x = A) + 0.4I (x = B)
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A Toy Example: Missing Not at Random

p(R = 1 | x , y) = p(R = 1 | y) = 0.8I (y = 0) + 0.2I (y = 1)
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What Can We Conclude So Far?

I In general, missing data complicates inference

I In the scale of complication

MCAR << MAR <<<<<<<<<<<<<<< MNAR

I But how can we know?
I MCAR vs MAR?: doable, but relies on assumption that MAR holds
I MAR vs MNAR?: not possible based on your observed data – MNAR

mechanisms depend on data that are not observed
I The data analyst must adopt an assumption about the mechanism

without being able to verify it

I “if one adopts an assumption of MAR, it must be defensible on
scientific, subject matter, and/or practical grounds, because it
cannot be validated from the data” Davidian and Tsiatis

I Inference under MNAR is more realistic but more complicated –
we’ll look into this towards the end of the course
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Never Work Under MAR?

Most approaches for inference with missing data assume MAR

I Option 1: “don’t worry about how the sausage gets made, just eat
the sausage!,” or the approach of the horse with blinders:
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Never Work Under MAR?

Most approaches for inference with missing data assume MAR

I Option 2: you can argue that MAR is not unreasonable. For
example, do you have sufficiently rich information that is always
observed?

I Say Z = (Z1,Z2)

I Z1: a vector subject to missingness

I Z2: fully observed

I R: response indicator for Z1

I MAR: p(R = r | z1, z2) = p(R = r | z1(r), z2)

I If assuming p(R = r | z1, z2) = p(R = r | z2) is reasonable, then
MAR is reasonable because MAR is more general
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Never Work Under MAR?

Most approaches for inference with missing data assume MAR

I Option 3: take this class, think about these issues, contribute to
creating better solutions!
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Summary

Main take-aways from today’s lecture:

I Proper handling of missing data requires proper notation

I Universe of missing-data assumptions:

MNAR

MAR MCAR

Next lecture:

I Näıve methods for handling missing data: imputation and complete
cases

I Reading: Chapter 2 in Davidian and Tsiatis

37 / 37



Summary

Main take-aways from today’s lecture:

I Proper handling of missing data requires proper notation

I Universe of missing-data assumptions:

MNAR

MAR MCAR

Next lecture:
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