Chapter 1 Introduction

2

メロト メポト メヨト メヨト

Sir Francis Galton (1822-1911)

- Galton was a polymath who made important contributions in many fields of science, including meteorology (the anti-cyclone and the first popular weather maps), statistics (regression and correlation), psychology (synesthesia), biology (the nature and mechanism of heredity), and criminology (fingerprints)
- He first introduced the use of questionnaires and surveys for collecting data on human communities.

J. Kim (ISU)

Karl Pearson (1857 - 1936)

- student of Francis Galton
- He has been credited with establishing the discipline of mathematical statistics, and contributed significantly to the field of biometrics, meteorology, theories of social Darwinism and eugenics
- Founding chair of department of Applied Statistics in University of London (1911), the first stat department in the world!
- Founding editor of Biometrika

- Due to no direct measurement
- Due to refusal / Don't know / not available
- Due to uncertainty in the measurement
- Due to design
- Due to self-selection

3. 3

- A study of managers of lowa farmer cooperatives (n = 98)
- Five variables
 - x₁: Knowledge (knowledge of the economic phase of management directed toward profit-making in a business and product knowledge)
 - x₂: Value Orientation (tendency to rationally evaluate means to an economic end)
 - x₃: Role Satisfaction (gratification obtained by the manager from performing the managerial role)
 - x₄: Past Training (amount of formal education)
 - y: Role performance
- We are interested in estimating parameters in the regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \epsilon$$

Measure	No. of Items	Mean	Reliability
x_1 Knowledge	26	1.38	0.6096
x_2 Value orientation	30	2.88	0.6386
x_3 Role satisfaction	11	2.46	0.8002
<i>x</i> ₄ Past training	1	2.12	1.0000
y Role performance	24	0.0589	0.8230

メロト メポト メヨト メヨト

Example 1 (Cont'd)

• Ordinary least squares method

$$\hat{Y} = -0.9740 + 0.2300X_1 + 0.1199X_2 + 0.0560X_3 + 0.1099X_4$$

(0.0535) (0.0356) (0.0375) (0.0392)

• Errors-in-variable estimates

$$\hat{Y} = -1.1828 + 0.3579X_1 + 0.1549X_2 + 0.0613X_3 + 0.0715X_4 (0.1288) (0.0794) (0.0510) (0.0447)$$

Reference:

Warren, White, and Fuller (1974). "An Errors-In-Variables Analysis of Managerial Role Performance", JASA, 69, p 886-893.

イロト イ団ト イヨト イヨト 三日

Variable descriptions

Variable	Definition	Possible values	Mean	Ν
Asthma	Level of confidence	1= little confidence	4.057	154
belief		5= lots of confidence		
Group	Treatment or control	0 = treatment	0.558	154
		1 = control		
Symsev	Severity of asthma	0 = no symptoms	0.235	141
	symptoms in 2 weeks	3 = severe symptoms		
Reading	Standardized state	Grade equivalent scores,	3.443	79
	reading test scores	from 1.10 to 8.10		
Age		Ranging from 8 to 14	10.586	152
Gender		0 = Male	0.442	154
		1 = Female		
Allergy	No. of allergies	Range from 0 to 7	2.783	83
		(日) (四) (2)		500

Missing Data Patterns

Symsev	Reading	Age	Allergy	# of cases	% of cases
0	0	0	0	19	12.3
М	0	0	0	1	0.6
0	М	0	0	54	35.1
0	0	0	М	56	36.4
М	М	0	0	9	5.8
М	0	0	М	1	0.6
0	М	0	М	10	6.5
0	0	М	М	2	1.3
М	М	0	М	2	1.3
				154	100.0

2

メロト メポト メヨト メヨト

Results (CC: Complete Case, ML: Maximum Likelihood)

Variable	CC an	alysis	ML analysis		
	В	SE	В	SE	
Intercept	4.617	0.838	4.083	0.362	
Trt group	-0.550	0.276	-0.132	0.112	
Symsev	-0.315	0.161	-0.480	0.144	
Reading	0.409	0.096	0.218	0.039	
Age	-0.211	0.115	-0.089	0.043	
Gender	0.198	0.189	0.084	0.104	
Allergy	-0.005	0.057	0.063	0.029	

Reference:

Pigott (2001). "A Review of Methods for Missing Data", *Educational Research and Evaluation*, 7, 353-383.

イロト イポト イヨト イヨト

- Large scale survey with about n = 157K sample households.
- Obtain the employment status: Employed, Unemployed, Not in labor force.
- To obtain response, interviewers visit the sample households up to four times. That is, the current rule allows for three follow-ups.

Realized Responses from the Korean LF survey data

status	t=1	t=2	t=3	t=4	No response
Employment	81,685	46,926	28,124	15,992	
Unemployment	1,509	948	597	352	32,350
Not in LF	57,882	32,308	19,086	10,790	

æ

イロト イヨト イヨト イヨト

	First Response at <i>t</i> -th visit				No
	t = 1	<i>t</i> = 2	<i>t</i> = 3	<i>t</i> = 4	Response
Response Rate (%)	42.94	24.40	14.55	8.26	9.85
Ave. Unemp. Rate (%)	1.81	1.98	2.08	2.15	?

Response propensity seems to be correlated with the unemployment rate.

Reference:

Kim, J.K. and Im, J. (2014). "Propensity score weighting adjustment with several follow-ups", *Biometrika* **101**, 439-448.

4 B M 4 B M

Measurement error: Age Heaping example

- Korean Longitudinal Study of Aging (KLoSA) data (http://www.kli.re.kr/klosa/en/about/introduce.jsp)
- Original sample measures height and weight from survey questions (N=9,842)
- A validation sample (n=505) is randomly selected from the original sample to obtain physical measurement for the height and weight.

Measurement error: BMI data example (Cont'd)

∃ >

National Resources Inventory (http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/nri/)

.∋...>

Pattern	X	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	Cost	Sample Size
1	\checkmark	\checkmark			c_1	<i>n</i> ₁
2	\checkmark		\checkmark		<i>c</i> ₂	<i>n</i> ₂
3	\checkmark			\checkmark	<i>c</i> ₃	n ₃
4	\checkmark	\checkmark	\checkmark		<i>C</i> 4	<i>n</i> 4
5	\checkmark		\checkmark	\checkmark	<i>C</i> 5	<i>n</i> 5
6	\checkmark	\checkmark		\checkmark	<i>c</i> ₆	<i>n</i> 6
7	\checkmark	\checkmark	\checkmark	\checkmark	C7	n ₇

Reference:

Chipperfield and Steel (2009). "Design and Estimation for Split Questionnaire Surveys", *Journal of Official Statistics* **25**, 227–244.

Will generally use this notation throughout

$$X =$$
 covariate or vector of covariates

- R = response indicator for Y
 - = 1 if Y observed, 0 if missing

Simulate observations from a normal distribution

```
## 5 observations from N(0.1)
> rnorm(n=5, mean=0, sd=1)
[1] -0.27961336 0.88267457 0.01061641 -0.08252131 0.61003977
> z = rnorm(n=5, mean=0, sd=1)
> z
[1]
     0.6741197 -0.3814703 1.4246447 0.2252487 -0.1592414
> zbar = mean(z)
> zbar
[1] 0.3566603
## 30 observations from N(3,5<sup>2</sup>)
> y = rnorm(n=30, mean=3, sd=5)
```

3 K 4 3 K

Simulating data in R

Summarize results of 100 simulations

```
### Simulate 5 observations 100 times
> results = matrix(0, nrow=100, ncol=2)
> colnames(results) = c("Mean", "SD")
> for (i in 1:100)
{ z = rnorm(n=5, mean=0, sd=1)
 results[i,1] = mean(z)
 results[i,2] = sd(z) }
### Print results
> results [1:5,]
            Mean
                        SD
[1,] -0.08047987 0.8044978
[2,] 0.42806792 0.4017826
[3,] 0.86330499 1.7292280
[4.] -0.53925212 1.1389417
[5,] -0.07935075 0.6154337
```

3

```
### standard deviation of individual sample means and SD's
> apply(results, 2, sd)
        Mean SD
0.4985703 0.3696412
```

æ

イロト イ理ト イヨト イヨト

Use command rbinom

```
### Simulate 10 binary observations having P(R=1) = .30
> R = rbinom(n=10, size=1, prob=.30)
> R.
[1] 0 1 0 1 0 0 1 0 1 1
> mean(R)
[1] 0.5
> R = rbinom(n=10, size=1, prob=.30)
> R.
 [1] 0 1 0 1 0 0 0 0 1 0
> mean(R)
[1] 0.3
```

2

▲圖▶ ▲屋▶ ▲屋▶

 Generate the 'full data' – in this case a sample of continuous outcomes Y

2 Generate the response indicators R – the missing data mechanism

- Have to determine P(R = 1)
- Can allow P(R = 1) to depend on Y

Simulating incomplete data in R

Example 1. Random deletion, or missing (completely) at random.

$$egin{array}{rcl} Y &\sim & {\it N}(0,1) \ {\it R} &\sim & {
m Ber}(0.5) \end{array}$$

Example 2. Deletion depends on Y such that lower values of Y are more likely to be observed. This is missing *not* at random.

$$Y \sim N(0,1)$$

 $R \sim Ber\{q(Y)\}$

where the function q(Y) is given by

$$q(Y) = \frac{1}{1 + \exp(Y)}$$

イロト イポト イヨト イヨト

Simulating incomplete data in R

Probability of response as a function of Y

J. Kim (ISU)

26 / 1

Can introduce a parameter that governs degree of dependence on \boldsymbol{Y}

$$q(\alpha Y) = \frac{1}{1 + \exp(\alpha Y)}$$

- When $\alpha = 0$, response probability does not depend on Y.
- For $\alpha \neq 0$, response probability depends on Y
- $\bullet\,$ Magnitude of α governs degree of dependence

The full-data model here is

$$egin{array}{rcl} Y &\sim & {\it N}(0,1) \ R &\sim & {
m Ber}\{{\it q}(lpha Y)\} \end{array}$$

where

$$q(\alpha Y) = \frac{1}{1 + \exp(\alpha Y)}$$

æ

▶ < 몰 ▶ < 몰 ▶</p>

Image: Image:

Different missing data mechanisms

These plots represent $\alpha = -3$, $\alpha = 0$, $\alpha = 1$


```
## Example 2: nonrandom deletion
Y = rnorm(n = 100, mean=0, sd=1)
q.Y = 1 / (1 + exp(Y))
R = rbinom(n = 100, size=1, prob=q.Y)
Fulldata = cbind(Y,R)
Y.obs = Fulldata[R==1,1]
Y.obs
mean(Y)
mean(Y.obs)
mean(R)
```

```
## Simulate the process in example #2 1000 times
results = matrix(0, nrow=1000, ncol=3)
summary = matrix(0, nrow=1, ncol=3)
labels = c("mean of Y", "mean of Y.obs", "mean of R")
```

```
colnames(results) = labels
colnames(summary) = labels
```

```
# alpha controls whether R depends on Y
alpha = 1
```

- 4 注 🕨 🖉 🕨 👘

```
for (i in 1:1000)
{
Y = rnorm(n = 100, mean=0, sd=1)
q.Y = 1 / ( 1 + exp( alpha*Y ) )
R = rbinom(n = 100, size=1, prob=q.Y)
Fulldata = cbind(Y,R)
Y.obs = Fulldata[R==1,1]
results[i,] = c( mean(Y), mean(Y.obs), mean(R) )
}
```

```
summary = apply(results, 2, mean)
summary
```

ALPHA = -3> summary mean of Y mean of Y.obs mean of R 0.0005652042 0.6911873446 0.4994900000 ALPHA = 0> summary mean of Y mean of Y.obs mean of R. -0.001543965 0.001200788 0.501350000 AI.PHA = 1> summary mean of Y mean of Y.obs mean of R. -0.0004493881 -0.4136889588 0.4999100000