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Sir Francis Galton (1822-1911)

Galton was a polymath who made
important contributions in many
fields of science, including
meteorology (the anti-cyclone and
the first popular weather maps),
statistics (regression and correlation),
psychology (synesthesia), biology
(the nature and mechanism of
heredity), and criminology
(fingerprints)

He first introduced the use of
questionnaires and surveys for
collecting data on human
communities.
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Karl Pearson (1857 - 1936)

student of Francis Galton

He has been credited with
establishing the discipline of
mathematical statistics, and
contributed significantly to the field
of biometrics, meteorology, theories
of social Darwinism and eugenics

Founding chair of department of
Applied Statistics in University of
London (1911), the first stat
department in the world!

Founding editor of Biometrika
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Incomplete Data

Due to no direct measurement

Due to refusal / Don’t know / not available

Due to uncertainty in the measurement

Due to design

Due to self-selection
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Example 1: No direct measurement

A study of managers of Iowa farmer cooperatives (n = 98)

Five variables

x1: Knowledge (knowledge of the economic phase of management
directed toward profit-making in a business and product knowledge)
x2: Value Orientation (tendency to rationally evaluate means to an
economic end)
x3: Role Satisfaction (gratification obtained by the manager from
performing the managerial role)
x4: Past Training (amount of formal education)
y : Role performance

We are interested in estimating parameters in the regression model

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε
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Example 1 (Cont’d)

Measure No. of Items Mean Reliability

x1 Knowledge 26 1.38 0.6096
x2 Value orientation 30 2.88 0.6386
x3 Role satisfaction 11 2.46 0.8002
x4 Past training 1 2.12 1.0000
y Role performance 24 0.0589 0.8230
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Example 1 (Cont’d)

Ordinary least squares method

Ŷ = −0.9740 + 0.2300X1 + 0.1199X2 + 0.0560X3 + 0.1099X4

(0.0535) (0.0356) (0.0375) (0.0392)

Errors-in-variable estimates

Ŷ = −1.1828 + 0.3579X1 + 0.1549X2 + 0.0613X3 + 0.0715X4

(0.1288) (0.0794) (0.0510) (0.0447)

Reference:
Warren, White, and Fuller (1974). “An Errors-In-Variables Analysis of
Managerial Role Performance”, JASA, 69, p 886-893.
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Example 2. Asthma Study Data (Pigott, 2001)

Variable descriptions

Variable Definition Possible values Mean N

Asthma Level of confidence 1= little confidence 4.057 154
belief 5= lots of confidence

Group Treatment or control 0 = treatment 0.558 154
1 = control

Symsev Severity of asthma 0 = no symptoms 0.235 141
symptoms in 2 weeks 3 = severe symptoms

Reading Standardized state Grade equivalent scores, 3.443 79
reading test scores from 1.10 to 8.10

Age Ranging from 8 to 14 10.586 152

Gender 0 =Male 0.442 154
1 = Female

Allergy No. of allergies Range from 0 to 7 2.783 83
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Example 2 (Cont’d)

Missing Data Patterns

Symsev Reading Age Allergy # of cases % of cases

O O O O 19 12.3
M O O O 1 0.6
O M O O 54 35.1
O O O M 56 36.4
M M O O 9 5.8
M O O M 1 0.6
O M O M 10 6.5
O O M M 2 1.3
M M O M 2 1.3

154 100.0
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Example 2 (Cont’d)

Results (CC: Complete Case, ML: Maximum Likelihood)

Variable CC analysis ML analysis
B SE B SE

Intercept 4.617 0.838 4.083 0.362
Trt group -0.550 0.276 -0.132 0.112
Symsev -0.315 0.161 -0.480 0.144
Reading 0.409 0.096 0.218 0.039

Age -0.211 0.115 -0.089 0.043
Gender 0.198 0.189 0.084 0.104
Allergy -0.005 0.057 0.063 0.029

Reference:
Pigott (2001). “A Review of Methods for Missing Data”, Educational
Research and Evaluation, 7, 353-383.
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Example 3: 2009 Local Area Labor Force survey in Korea.

Large scale survey with about n = 157K sample households.

Obtain the employment status: Employed, Unemployed, Not in labor
force.

To obtain response, interviewers visit the sample households up to
four times. That is, the current rule allows for three follow-ups.
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Example 3 (Cont’d)

Realized Responses from the Korean LF survey data

status t=1 t=2 t=3 t=4 No response

Employment 81,685 46,926 28,124 15,992

Unemployment 1,509 948 597 352 32,350

Not in LF 57,882 32,308 19,086 10,790
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Example 3 (Cont’d)

First Response at t-th visit No
t = 1 t = 2 t = 3 t = 4 Response

Response Rate (%) 42.94 24.40 14.55 8.26 9.85

Ave. Unemp. Rate (%) 1.81 1.98 2.08 2.15 ?

Response propensity seems to be correlated with the unemployment rate.

Reference:
Kim, J.K. and Im, J. (2014). “Propensity score weighting adjustment with
several follow-ups”, Biometrika 101, 439-448.
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Measurement error: Age Heaping example
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Measurement error: BMI data example

Korean Longitudinal Study of Aging (KLoSA) data
( http://www.kli.re.kr/klosa/en/about/introduce.jsp)

Original sample measures height and weight from survey questions
(N=9,842)

A validation sample (n=505) is randomly selected from the original
sample to obtain physical measurement for the height and weight.
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Measurement error: BMI data example (Cont’d)
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Planned missingness: NRI example

National Resources Inventory
(http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/nri/)

1997 2000 2001 2002 2003 2004

X X X X X X
X X
X X
X X
X X
X
X
X

J. Kim (ISU) Chapter 1 17 / 1



Planned missingness: Split questionaire design

Pattern x y1 y2 y3 Cost Sample Size

1 X X c1 n1
2 X X c2 n2
3 X X c3 n3
4 X X X c4 n4
5 X X X c5 n5
6 X X X c6 n6
7 X X X X c7 n7

Reference:
Chipperfield and Steel (2009). “Design and Estimation for Split
Questionnaire Surveys”, Journal of Official Statistics 25, 227–244.
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Using Simulation to Understand Missing Data Mechanisms

Will generally use this notation throughout

Y = outcome or dependent variable

X = covariate or vector of covariates

R = response indicator for Y

= 1 if Y observed, 0 if missing
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Simulating data in R

Simulate observations from a normal distribution

## 5 observations from N(0,1)

> rnorm(n=5, mean=0, sd=1)

[1] -0.27961336 0.88267457 0.01061641 -0.08252131 0.61003977

> z = rnorm(n=5, mean=0, sd=1)

> z

[1] 0.6741197 -0.3814703 1.4246447 0.2252487 -0.1592414

> zbar = mean(z)

> zbar

[1] 0.3566603

## 30 observations from N(3,5^2)

> y = rnorm(n=30, mean=3, sd=5)
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Simulating data in R

Summarize results of 100 simulations

### Simulate 5 observations 100 times

> results = matrix(0, nrow=100, ncol=2)

> colnames(results) = c("Mean", "SD")

> for (i in 1:100)

{ z = rnorm(n=5, mean=0, sd=1)

results[i,1] = mean(z)

results[i,2] = sd(z) }

### Print results

> results[1:5,]

Mean SD

[1,] -0.08047987 0.8044978

[2,] 0.42806792 0.4017826

[3,] 0.86330499 1.7292280

[4,] -0.53925212 1.1389417

[5,] -0.07935075 0.6154337
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Simulating data in R

> results[1:5,]

Mean SD

[1,] -0.08047987 0.8044978

[2,] 0.42806792 0.4017826

[3,] 0.86330499 1.7292280

[4,] -0.53925212 1.1389417

[5,] -0.07935075 0.6154337

### calculate mean of individual sample means and SD’s

> apply(results, 2, mean)

Mean SD

0.03208639 0.95688116

### standard deviation of individual sample means and SD’s

> apply(results, 2, sd)

Mean SD

0.4985703 0.3696412
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Simulating binary data in R

Use command rbinom

### Simulate 10 binary observations having P(R=1) = .30

> R = rbinom(n=10, size=1, prob=.30)

> R

[1] 0 1 0 1 0 0 1 0 1 1

> mean(R)

[1] 0.5

> R = rbinom(n=10, size=1, prob=.30)

> R

[1] 0 1 0 1 0 0 0 0 1 0

> mean(R)

[1] 0.3

J. Kim (ISU) Chapter 1 23 / 1



Simulating incomplete data in R

1 Generate the ‘full data’ – in this case a sample of continuous
outcomes Y

2 Generate the response indicators R – the missing data mechanism

Have to determine P(R = 1)
Can allow P(R = 1) to depend on Y
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Simulating incomplete data in R

Example 1. Random deletion, or missing (completely) at random.

Y ∼ N(0, 1)

R ∼ Ber(0.5)

Example 2. Deletion depends on Y such that lower values of Y are more
likely to be observed. This is missing not at random.

Y ∼ N(0, 1)

R ∼ Ber{q(Y )}

where the function q(Y ) is given by

q(Y ) =
1

1 + exp(Y )
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Simulating incomplete data in R

Probability of response as a function of Y
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A more general form of missing data mechanism

Can introduce a parameter that governs degree of dependence on Y

q(αY ) =
1

1 + exp(αY )

When α = 0, response probability does not depend on Y .

For α 6= 0, response probability depends on Y

Magnitude of α governs degree of dependence
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Different missing data mechanisms

The full-data model here is

Y ∼ N(0, 1)

R ∼ Ber{q(αY )}

where

q(αY ) =
1

1 + exp(αY )
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Different missing data mechanisms

These plots represent α = −3, α = 0, α = 1
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R Code for simulation

## Example 2: nonrandom deletion

Y = rnorm(n = 100, mean=0, sd=1)

q.Y = 1 / ( 1 + exp(Y) )

R = rbinom(n = 100, size=1, prob=q.Y)

Fulldata = cbind(Y,R)

Y.obs = Fulldata[R==1,1]

Y.obs

mean(Y)

mean(Y.obs)

mean(R)
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R Code for simulation

## Simulate the process in example #2 1000 times

results = matrix(0, nrow=1000, ncol=3)

summary = matrix(0, nrow=1, ncol=3)

labels = c("mean of Y", "mean of Y.obs", "mean of R")

colnames(results) = labels

colnames(summary) = labels

# alpha controls whether R depends on Y

alpha = 1
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R Code for simulation

for (i in 1:1000)

{

Y = rnorm(n = 100, mean=0, sd=1)

q.Y = 1 / ( 1 + exp( alpha*Y ) )

R = rbinom(n = 100, size=1, prob=q.Y)

Fulldata = cbind(Y,R)

Y.obs = Fulldata[R==1,1]

results[i,] = c( mean(Y), mean(Y.obs), mean(R) )

}

summary = apply(results, 2, mean)

summary
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Result

ALPHA = -3

> summary

mean of Y mean of Y.obs mean of R

0.0005652042 0.6911873446 0.4994900000

ALPHA = 0

> summary

mean of Y mean of Y.obs mean of R

-0.001543965 0.001200788 0.501350000

ALPHA = 1

> summary

mean of Y mean of Y.obs mean of R

-0.0004493881 -0.4136889588 0.4999100000

J. Kim (ISU) Chapter 1 33 / 1


