Chapter 1

Introduction

Sir Francis Galton (1822-1911)

- Galton was a polymath who made important contributions in many fields of science, including meteorology (the anti-cyclone and the first popular weather maps), statistics (regression and correlation), psychology (synesthesia), biology (the nature and mechanism of heredity), and criminology (fingerprints)
- He first introduced the use of questionnaires and surveys for collecting data on human communities.

Karl Pearson (1857-1936)

- student of Francis Galton
- He has been credited with establishing the discipline of mathematical statistics, and contributed significantly to the field of biometrics, meteorology, theories of social Darwinism and eugenics
- Founding chair of department of Applied Statistics in University of London (1911), the first stat department in the world!
- Founding editor of Biometrika

Incomplete Data

- Due to no direct measurement
- Due to refusal / Don't know / not available
- Due to uncertainty in the measurement
- Due to design
- Due to self-selection

Example 1: No direct measurement

- A study of managers of lowa farmer cooperatives $(n=98)$
- Five variables
- x_{1} : Knowledge (knowledge of the economic phase of management directed toward profit-making in a business and product knowledge)
- x_{2} : Value Orientation (tendency to rationally evaluate means to an economic end)
- x_{3} : Role Satisfaction (gratification obtained by the manager from performing the managerial role)
- x_{4} : Past Training (amount of formal education)
- y : Role performance
- We are interested in estimating parameters in the regression model

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+\epsilon
$$

Example 1 (Cont'd)

Measure	No. of Items	Mean	Reliability
x_{1} Knowledge	26	1.38	0.6096
x_{2} Value orientation	30	2.88	0.6386
x_{3} Role satisfaction	11	2.46	0.8002
x_{4} Past training	1	2.12	1.0000
y Role performance	24	0.0589	0.8230

Example 1 (Cont'd)

- Ordinary least squares method

$$
\begin{array}{r}
\hat{Y}=-0.9740+0.2300 X_{1}+0.1199 X_{2}+0.0560 X_{3}+0.1099 X_{4} \\
(0.0535) \quad(0.0356) \quad(0.0375) \quad(0.0392)
\end{array}
$$

- Errors-in-variable estimates

$$
\begin{array}{r}
\hat{Y}=-1.1828+0.3579 X_{1}+0.1549 X_{2}+0.0613 X_{3}+0.0715 X_{4} \\
(0.1288) \quad(0.0794) \quad(0.0510) \quad(0.0447)
\end{array}
$$

Reference:

Warren, White, and Fuller (1974). "An Errors-In-Variables Analysis of Managerial Role Performance", JASA, 69, p 886-893.

Example 2. Asthma Study Data (Pigott, 2001)

Variable descriptions

Variable	Definition	Possible values	Mean	N
Asthma				
belief	Level of confidence	$1=$ little confidence $5=$ lots of confidence	4.057	154
Group	Treatment or control	$0=$ treatment $1=$ control	0.558	154
Symsev	Severity of asthma symptoms in 2 weeks	$0=$ no symptoms $3=$ severe symptoms	0.235	141
Reading	Standardized state reading test scores	Grade equivalent scores, from 1.10 to 8.10	3.443	79
Age		Ranging from 8 to 14	10.586	152
Gender		$0=$ Male $1=$ Female	0.442	154
Allergy	No. of allergies	Range from 0 to 7	2.783	83

Example 2 (Cont'd)

Missing Data Patterns

Symsev	Reading	Age	Allergy	\# of cases	\% of cases
O	O	O	O	19	12.3
M	O	O	O	1	0.6
O	M	O	O	54	35.1
O	O	O	M	56	36.4
M	M	O	O	9	5.8
M	O	O	M	1	0.6
O	M	O	M	10	6.5
O	O	M	M	2	1.3
M	M	O	M	2	1.3

Example 2 (Cont'd)

Results (CC: Complete Case, ML: Maximum Likelihood)

Variable	CC analysis		ML analysis	
	B	SE	B	SE
Intercept	4.617	0.838	4.083	0.362
Trt group	-0.550	0.276	-0.132	0.112
Symsev	-0.315	0.161	-0.480	0.144
Reading	0.409	0.096	0.218	0.039
Age	-0.211	0.115	-0.089	0.043
Gender	0.198	0.189	0.084	0.104
Allergy	-0.005	0.057	0.063	0.029

Reference:

Pigott (2001). "A Review of Methods for Missing Data", Educational Research and Evaluation, 7, 353-383.

Example 3: 2009 Local Area Labor Force survey in Korea.

- Large scale survey with about $n=157 \mathrm{~K}$ sample households.
- Obtain the employment status: Employed, Unemployed, Not in labor force.
- To obtain response, interviewers visit the sample households up to four times. That is, the current rule allows for three follow-ups.

Example 3 (Cont'd)

Realized Responses from the Korean LF survey data

status	$\mathrm{t}=1$	$\mathrm{t}=2$	$\mathrm{t}=3$	$\mathrm{t}=4$	No response
Employment	81,685	46,926	28,124	15,992	
Unemployment	1,509	948	597	352	32,350
Not in LF	57,882	32,308	19,086	10,790	

Example 3 (Cont'd)

	First Response at t-th visit			No	
	$t=1$	$t=2$	$t=3$		Response
Response Rate (\%)	42.94	24.40	14.55	8.26	9.85
Ave. Unemp. Rate (\%)	1.81	1.98	2.08	2.15	$?$

Response propensity seems to be correlated with the unemployment rate.

Reference:

Kim, J.K. and Im, J. (2014). "Propensity score weighting adjustment with several follow-ups", Biometrika 101, 439-448.

Measurement error: Age Heaping example

Bangladesh Age Clumping Display
\% of children in 1 month age groups

Age of children

Measurement error: BMI data example

- Korean Longitudinal Study of Aging (KLoSA) data (http://www.kli.re.kr/klosa/en/about/introduce.jsp)
- Original sample measures height and weight from survey questions ($\mathrm{N}=9,842$)
- A validation sample ($n=505$) is randomly selected from the original sample to obtain physical measurement for the height and weight.

Measurement error: BMI data example (Cont'd)

Weight

Height

Planned missingness: NRI example

National Resources Inventory
(http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/nri/)

Planned missingness: Split questionaire design

Pattern	x	y_{1}	y_{2}	y_{3}	Cost	Sample Size
1	\checkmark	\checkmark			c_{1}	n_{1}
2	\checkmark		\checkmark		c_{2}	n_{2}
3	\checkmark			\checkmark	c_{3}	n_{3}
4	\checkmark	\checkmark	\checkmark		c_{4}	n_{4}
5	\checkmark		\checkmark	\checkmark	c_{5}	n_{5}
6	\checkmark	\checkmark		\checkmark	c_{6}	n_{6}
7	\checkmark	\checkmark	\checkmark	\checkmark	c_{7}	n_{7}

Reference:
Chipperfield and Steel (2009). "Design and Estimation for Split Questionnaire Surveys", Journal of Official Statistics 25, 227-244.

Using Simulation to Understand Missing Data Mechanisms

Will generally use this notation throughout

$$
\begin{aligned}
Y & =\text { outcome or dependent variable } \\
X & =\text { covariate or vector of covariates } \\
R & =\text { response indicator for } Y \\
& =1 \text { if } Y \text { observed, } 0 \text { if missing }
\end{aligned}
$$

Simulating data in R

Simulate observations from a normal distribution

```
## 5 observations from N(0,1)
> rnorm(n=5, mean=0, sd=1)
[1] -0.27961336 0.88267457 0.01061641 -0.08252131 0.61003977
>z=rnorm(n=5, mean=0, sd=1)
> Z
[1] 0.6741197 -0.3814703 1.4246447 0.2252487 -0.1592414
> zbar = mean(z)
> zbar
[1] 0.3566603
## 30 observations from N(3,5^2)
> y = rnorm(n=30, mean=3, sd=5)
```


Simulating data in R

```
Summarize results of }100\mathrm{ simulations
```

```
### Simulate 5 observations 100 times
```


Simulate 5 observations 100 times

> results = matrix(0, nrow=100, ncol=2)
> results = matrix(0, nrow=100, ncol=2)
> colnames(results) = c("Mean", "SD")
> colnames(results) = c("Mean", "SD")
> for (i in 1:100)
> for (i in 1:100)
{ z = rnorm(n=5, mean=0, sd=1)
{ z = rnorm(n=5, mean=0, sd=1)
results[i,1] = mean(z)
results[i,1] = mean(z)
results[i,2] = sd(z) }
results[i,2] = sd(z) }

Print results

Print results

> results[1:5,]
> results[1:5,]
Mean SD
Mean SD
[1,] -0.08047987 0.8044978
[1,] -0.08047987 0.8044978
[2,] 0.42806792 0.4017826
[2,] 0.42806792 0.4017826
[3,] 0.86330499 1.7292280
[3,] 0.86330499 1.7292280
[4,] -0.53925212 1.1389417
[4,] -0.53925212 1.1389417
[5,] -0.07935075 0.6154337

```
    [5,] -0.07935075 0.6154337
```


Simulating data in R

```
> results[1:5,]
                Mean
                SD
[1,] -0.08047987 0.8044978
[2,] 0.42806792 0.4017826
[3,] 0.86330499 1.7292280
[4,] -0.53925212 1.1389417
[5,] -0.07935075 0.6154337
### calculate mean of individual sample means and SD's
> apply(results, 2, mean)
    Mean SD
0.03208639 0.95688116
### standard deviation of individual sample means and SD's
> apply(results, 2, sd)
    Mean SD
0.4985703 0.3696412
```


Simulating binary data in R

```
Use command rbinom
### Simulate 10 binary observations having P(R=1) = . }3
>R = rbinom(n=10, size=1, prob=.30)
> R
    [1] 0 1 0 0 1 0 0 1 0 1 1
mean(R)
[1] 0.5
>R = rbinom(n=10, size=1, prob=.30)
> R
    [1] 0}1
mean(R)
[1] 0.3
```


Simulating incomplete data in R

(1) Generate the 'full data' - in this case a sample of continuous outcomes Y
(2) Generate the response indicators R - the missing data mechanism

- Have to determine $P(R=1)$
- Can allow $P(R=1)$ to depend on Y

Simulating incomplete data in R

Example 1. Random deletion, or missing (completely) at random.

$$
\begin{aligned}
& Y \sim N(0,1) \\
& R \sim \operatorname{Ber}(0.5)
\end{aligned}
$$

Example 2. Deletion depends on Y such that lower values of Y are more likely to be observed. This is missing not at random.

$$
\begin{aligned}
& Y \sim N(0,1) \\
& R \sim \operatorname{Ber}\{q(Y)\}
\end{aligned}
$$

where the function $q(Y)$ is given by

$$
q(Y)=\frac{1}{1+\exp (Y)}
$$

Simulating incomplete data in R

Probability of response as a function of Y

A more general form of missing data mechanism

Can introduce a parameter that governs degree of dependence on Y

$$
q(\alpha Y)=\frac{1}{1+\exp (\alpha Y)}
$$

- When $\alpha=0$, response probability does not depend on Y.
- For $\alpha \neq 0$, response probability depends on Y
- Magnitude of α governs degree of dependence

Different missing data mechanisms

The full-data model here is

$$
\begin{aligned}
& Y \sim N(0,1) \\
& R \sim \operatorname{Ber}\{q(\alpha Y)\}
\end{aligned}
$$

where

$$
q(\alpha Y)=\frac{1}{1+\exp (\alpha Y)}
$$

Different missing data mechanisms

These plots represent $\alpha=-3, \alpha=0, \alpha=1$

R Code for simulation

```
## Example 2: nonrandom deletion
Y = rnorm(n = 100, mean=0, sd=1)
q.Y = 1/(1 + exp(Y) )
R = rbinom(n = 100, size=1, prob=q.Y)
Fulldata = cbind(Y,R)
Y.obs = Fulldata[R==1,1]
Y.obs
mean(Y)
mean(Y.obs)
mean(R)
```


R Code for simulation

```
## Simulate the process in example #2 1000 times
results = matrix(0, nrow=1000, ncol=3)
summary = matrix(0, nrow=1, ncol=3)
labels = c("mean of Y", "mean of Y.obs", "mean of R")
colnames(results) = labels
colnames(summary) = labels
```

\# alpha controls whether R depends on Y
alpha = 1

R Code for simulation

```
for (i in 1:1000)
{
Y = rnorm(n = 100, mean=0, sd=1)
q.Y = 1 / ( 1 + exp( alpha*Y ) )
R = rbinom(n = 100, size=1, prob=q.Y)
Fulldata = cbind(Y,R)
Y.obs = Fulldata[R==1,1]
results[i,] = c( mean(Y), mean(Y.obs), mean(R) )
}
summary = apply(results, 2, mean)
summary
```


Result

```
ALPHA = -3
> summary
    mean of Y mean of Y.obs mean of R
    0.0005652042 0.6911873446 0.4994900000
ALPHA = 0
> summary
    mean of Y mean of Y.obs mean of R
    -0.001543965 0.001200788 0.501350000
ALPHA = 1
> summary
    mean of Y mean of Y.obs mean of R
-0.0004493881 -0.4136889588 0.4999100000
```

