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Covid data

• 4780 patients (patients with at least one PCR-documented SARS-CoV-2

RNA from a nasopharyngeal sample)

• 119 continuous and categorical variables: heterogeneous

• 34 hospitals: multilevel data

Hospital Treatment Age Sex Weight DDI BP dead28 . . .

Beaujon HCQ 54 m 85 NA 180 yes

Pitie AZ 76 m NA NA 131 no

Beaujon HCQ+AZ 63 m 80 270 145 yes

Pitie HCQ 80 f NA NA 107 no

HEGP none 66 m 98 5890 118 no
...

. . .

⇒ Estimate causal effect: Administration of the treatment

”Hydroxychloroquine” on the outcome 28-day mortality.
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Observational data: non random assignment

survived deceased Pr(survived | treatment) Pr(deceased | treatment)

HCQ 497 (11.4%) 111 (2.6%) 0.817 0.183

HCQ+AZI 158 (3.6%) 54 (1.2%) 0.745 0.255

none 2699 (62.1%) 830 (19.1%) 0.765 0.235

Mortality rate 23% - for HCQ 18% - non treated 24%: treatment helps?
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Severe patients (with higher risk of death) are less likely to be treated.

If control group does not look like treatment group, difference in response may

be confounded by differences between the groups. 4



Potential outcome framework (Neyman, 1923, Rubin, 1974)

Causal effect

• n iid samples (Xi ,Wi ,Yi (1),Yi (0)) ∈ Rd × {0, 1} × R× R
• Individual causal effect of the treatment: ∆i , Yi (1)− Yi (0)

Missing problem: ∆i never observed (only observe one outcome/indiv)

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? Survived

-6 45 F 0 Dead ?

0 15 M 1 ? Survived

. . . . . . . . . . . .

-2 52 M 0 Survived ?

Average treatment effect (ATE): τ , E[∆i ] = E[Yi (1)− Yi (0)]

The ATE is the difference of the average outcome had everyone gotten treated

and the average outcome had nobody gotten treatment.

ATE=0.05: mortality rate in the treated group is 5% points higher than in the

control group. So, on average the treatment increases the risk of dying.
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Assumption for ATE identifiability in observational data

Unconfoundedness - selection on observables

{Yi (0),Yi (1)} ⊥⊥Wi |Xi

Treatment assignment Wi is random conditionally on covariates Xi

Measure enough covariates to capture dependence between Wi and outcomes

• Observed outcome: Yi = WiYi (1) + (1−Wi )Yi (0)

Unconfoundedness - graphical model

X

W Y{Y (0),Y (1)}

Unobserved confounders make it impossible to separate correlation and

causality when correlated to both the outcome and the treatment.

ATE not identifiable without assumption: it is not a sample size problem! 6



Assumption for ATE identifiability in observational data

Propensity score: probability of treatment given observed covariates.

Propensity score - overlap assumption

e(x) , P(Wi = 1 |Xi = x) ∀ x ∈ X .

We assume overlap, i.e. η < e(x) < 1− η, ∀ x ∈ X and some η > 0

Left: Non smoker and never treated Right: Smokers and all treated

If proba to be treated when smoker e(x) = 1, how to estimate the outcome for

smokers when not treated Y (0)? How to extrapolate if total confusion? 7



Inverse-propensity weighting estimation of ATE

Average treatment effect (ATE): τ , E[∆i ] = E[Yi (1)− Yi (0)]

Propensity score: e(x) , P(Wi = 1 |Xi = x)

IPW estimator (Horvitz-Thomson, survey)

τ̂IPW ,
1

n

n∑
i=1

(
WiYi

ê(Xi )
− (1−Wi )Yi

1− ê(Xi )

)

⇒ Balance the differences between the two groups

⇒ Consistent estimator of τ as long as ê(·) is consistent.

X

Y

Treated 
observations have 
higher X’s on 
average

X

Y Reweighting control 
observations with 
high X’s
adjusts for 
difference

Credit: S. Athey
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Doubly robust ATE estimation

Model Treatment on Covariates e(x) , P(Wi = 1 |Xi = x)

Model Outcome on Covariates µ(w)(x) , E[Yi (w) |Xi = x ]

Augmented IPW - Double Robust (DR)

τ̂AIPW , 1
n

∑n
i=1

(
µ̂(1)(Xi )− µ̂(0)(Xi ) + Wi

Yi−µ̂(1)(Xi )

ê(Xi )
− (1−Wi )

Yi−µ̂(0)(Xi )

1−ê(Xi )

)
is consistent if either the µ̂(w)(x) are consistent or ê(x) is consistent.

Possibility to use any (machine learning) procedure such as random

forests, deep nets, etc. to estimate ê(x) and µ̂(w)(x) without harming

the interpretability of the causal effect estimation.

Properties - Double Machine Learning (Chernozhukov et al., 2018)

If ê(x) and µ̂(w)(x) converge at the rate n1/4 then
√
n (τ̂DR − τ)

d−−−→
n→∞

N (0,V ∗), V ∗ semiparametric efficient variance.
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Missing values
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Deleting rows with missing values?

“One of the ironies of Big Data is that missing data play an ever more

significant role” (R. Samworth, 2019)

An n × p matrix, each entry is missing with probability 0.01

p = 5 =⇒ ≈ 95% of rows kept

p = 300 =⇒ ≈ 5% of rows kept
10



Missing (informative) values in the covariates

Straightforward – but often biased – solution is complete-case analysis.

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

NA 20 F 1 ? Survived

-6 45 NA 0 Dead ?

0 NA M 1 ? Survived

NA 32 F 1 ? Dead

1 63 M 1 Dead ?

-2 NA M 0 Survived ?

→ Often not a good idea! What are the alternatives?

Three families of methods - different assumptions

• Unconfoundedness with missingness + (no) missing values

mechanisms Mayer, J., Wager, Sverdrup, Moyer, Gauss. AOAS 2020.

• Classical unconfoundedness + classical missing values mechanisms

• Latent unconfoundedness + classical missing values mechanisms

Mayer, J., Raimundo, Vert. 2020.

11



1. Unconfoundedness with missing + (no) missing hypothesis

Covariates Treatment Outcome(s)

X∗1 X∗2 X∗3 W Y(0) Y(1)

NA 20 F 1 ? S

-6 45 NA 0 D ?

0 NA M 1 ? S

NA 32 F 1 ? D

1 63 M 1 D ?

-2 NA M 0 S ?

Unconfoundedness: {Yi (1),Yi (0)} ⊥⊥Wi |X not testable from the data.

⇒ Doctors give us the DAG (covariates relevant for either treatment

decision and for predicting the outcome)

Unconfoundedness with missing values: {Yi (1),Yi (0)} ⊥⊥Wi |X ∗

X ∗ , (1− R)� X + R � NA; with Rij = 1 if Xij is missing, 0 otherwise.

⇒ Doctors decide to treat a patient based on what they observe/record.

We have access to the same information as the doctors. 12



Under 1: Double Robust with missing values

AIPW with missing values

τ̂∗ , 1
n

∑
i

(
µ̂∗(1)(Xi )− µ̂∗(0)(Xi ) + Wi

Yi−µ̂∗(1)
(Xi )

ê∗(Xi )
− (1−Wi )

Yi−µ̂∗(0)
(Xi )

1−ê∗(Xi )

)
Generalized propensity score (Rosenbaum and Rubin, 1984)

e∗(x∗) , P(W = 1 |X ∗ = x∗)

One model per pattern:
∑

r∈{0,1}d E
[
W |Xobs(r),R = r

]
1R=r

⇒ Supervised learning with missing values. 1

• Mean imputation is consistent with a universally consistent learner.

• Missing Incorporate in Attributes (MIA) for trees methods.

Implemented in grf package: combine two non-parametrics models,

forests (conditional outcome and treatment assignment) adapted to any

missing values with MIA.

τ̂AIPW ∗ is
√
n-consistent, asymptotically normal given the product of

RMSE of the nuisance estimates decay as o(n−1/2) Mayer et al. AOAS 2020

1consistency of supervised learning with missing values J., Prost, Scornet, Varoquaux. JMLR 2020
13
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2. Classical unconfoundedness + missing values mechanism

Aparté on missing values mechanisms taxonomy (Rubin, 1976)
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MCAR - MAR - MNAR

Orange: missing values for Systolic Blood Pressure - Gravity index

(GCS) is always observed

MCAR (completely at random): Proba to be missing does not depend on

SBP neither on gravity

MAR: Proba depends on gravity (we do not measure for too severe patients)

MNAR (not at random): Proba depends on SBP (low SBP not measured)

14



Under 2: Multiple Imputation

Consistency of IPW with missing values (Seaman and White, 2014)

Assume Missing At Random (MAR) mechanism. Multiple imputation

(MICE using (X ∗,W ,Y )) with IPW on each imputed data is consistent when

Gaussian covariates and logistic/linear treatment/oucome model

X∗1 X∗2 X∗3 ... W Y

NA 20 10 ... 1 survived

-6 45 NA ... 1 survived

0 NA 30 ... 0 died

NA 32 35 ... 0 survived

-2 NA 12 ... 0 died

1 63 40 ... 1 survived

1) Generate M plausible values for each missing value

X1 X2 X3 ... W Y

3 20 10 ... 1 s

-6 45 6 ... 1 s

0 4 30 ... 0 d

-4 32 35 ... 0 s

-2 15 12 ... 0 d

1 63 40 ... 1 s

X1 X2 X3 ... W Y

-7 20 10 ... 1 s

-6 45 9 ... 1 s

0 12 30 ... 0 d

13 32 35 ... 0 s

-2 10 12 ... 0 d

1 63 40 ... 1 s

X1 X2 X3 ... W Y

7 20 10 ... 1 s

-6 45 12 ... 1 s

0 -5 30 ... 0 d

2 32 35 ... 0 s

-2 20 12 ... 0 d

1 63 40 ... 1 s

2) Estimate ATE on each imputed data set: τ̂m, V̂ar (τ̂m)

3) Combine the results (Rubin’s rules): τ̂ = 1
M

∑M
m=1 τ̂m

V̂ar (τ̂) = 1
M

∑M
m=1 V̂ar (τ̂m) +

(
1 + 1

M

)
1

M−1

∑M
m=1 (τ̂m − τ̂)2 15



3. Latent unconfoundedness + missing values mechanism

Latent confounding assumption

The covariates X are noisy (incomplete) proxies of the true latent

confounders Z (Kallus et al., 2018; Louizos et al., 2017).

X ∗ , (1− R)� X + R � NA; with Rij = 1 if Xij is missing, 0 otherwise

Observed outcome: Yi = WiYi (1) + (1−Wi )Yi (0)

X X ? RZ

W Y{Y (0),Y (1)}

Matrix Factorization as a pre-processing step

• Assume data are generated as a low-rank structure corrupted by

noise. Estimate Z using matrix completion from X ∗(softimpute types).

• Plug Ẑ in regression model of outcome on treatment and confounders:

Y = τW + Zβ + ε, ε ∼ N (0, σ2I ) (or in the (A)IPW estimators)

• Kallus et al. (2018) show that τ̂ is a consistent estimator under

MCAR of the Average Treatment Effect.

16



3. Latent unconfoundedness + missing values mechanism

Latent confounding assumption

The covariates X are noisy (incomplete) proxies of the true latent

confounders Z (Kallus et al., 2018; Louizos et al., 2017).

X ∗ , (1− R)� X + R � NA; with Rij = 1 if Xij is missing, 0 otherwise

Observed outcome: Yi = WiYi (1) + (1−Wi )Yi (0)

X X ? RZ

W Y{Y (0),Y (1)}

Matrix Factorization as a pre-processing step

• Assume data are generated as a low-rank structure corrupted by

noise. Estimate Z using matrix completion from X ∗(softimpute types).
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3. Latent unconfoundedness + missing values mechanism

Latent confounding assumption

Covariates Xn×d proxies of the latent confounders Zn×q.

X ∗ , (1− R)� X + R � NA; with Rij = 1 if Xij is missing, 0 otherwise

X X ? RZ

W Y{Y (0),Y (1)}

MissDeepCausal (MDC) Mayer, J., Raimundo, Vert, 2020.

• Assume a Deep Latent Variable Model instead of linear factor analysis

• Leverage VAE with MAR values (Mattei and Frellsen, 2019). Imputing

NA with 0 maximizes an ELBO of the observed log-likelihood.

• Draw (Z (j))1≤j≤B from the posterior distribution P(Z |X ?) (using

importance sampling with Q(Z |X ?) for proposal).

MDC-Multiple Imputation: estimate ATE on each (Z (j))

MDC-process plug-in Ẑ (x?) , E[Z |X ? = x?] in classical estimators

Flexible with promising empirical results.
17



Methods to do causal inference with missing values

Covariates Missingness Unconfoundedness Models for

(W ,Y )

multiva-

riate

normal

general M(C)AR general Missing Latent Classical
logistic-

linear

non-

param.

1. (SA)EM 2
3 7 3 7 3 7 7 3 7

1. Mean.GRF 3 3 3 (3) 3 7 7 3 3

1. MIA.GRF 3 3 3 (3) 3 7 7 3 3

2. Mult. Imp. 3 3 3 7 (7) 7 3 3 (7)

3. MatrixFact. 3 7 3 7 7 3 7 3 (7)

3. MissDeep-

Causal
3 3 3 7 7 3 7 3 3

Methods & assumptions on data generating process (models for covariates,

outcome, treatment), missing values mechanism and identifiability conditions.

3: can be handled 7: not applicable in theory

(3): empirical results and ongoing work on theoretical guarantees

(7): no theoretical guarantees but heuristics.

2Use of EM algorithms for logistic regression with missing values. Jiang et al. (2020) 18



Simulations: no overall best performing method.

• 10 covariates generated with Gaussian mixture model Xi ∼ Nd (µ(ci )
,Σ(ci )

)|Ci = ci ,

C from a multinomial distribution with three categories.

• Unconfoundedness on complete/observed covariates, 30% NA

• Logistic-linear for (W , Y ), logit(e(Xi·)) = αTXi·, Yi ∼ N (βTXi· + τWi , σ
2)

Figure 1: Estimated with AIPW and true ATE τ = 1

Unconf. despite missingness

Complete data unconf.

100 500 1000 5000
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Method
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→ GRF-MIA is asymptotically unbiased under unconfoundedness despite missingness.

→ Multiple imputation requires many imputations to remove bias.
19



Simulations: no overall best performing method.

• 100 covariates generated with a DLVM model, latent confounding (q = 3):

Zi ∼ Nq(0, σz ), covariates Xi sampled from Nd (µ(Z),Σ(Z)), where

(µ(Z),Σ(Z)) = (V tanh(UZ + a) + b, diag{exp(ηT tanh(UZ + a) + δ)}) with

U,V , a, b, δ, η drawn from standard Gaussian and uniform distributions.

• 30% MCAR, n = 1000.

• Logistic-linear for (W , Y ), logit(e(Zi·)) = αTZi·, Yi ∼ N (βTZi· + τWi , σ
2)

Figure 1: Estimated with AIPW and true ATE τ = 1.

MDC.m
i

MDC.pr
oce

ss MF
MICE X Z

0.6

0.7

0.8

0.9

1.0

1.1

1.2

→ MDC empirically unbiased if number of features (d) >> dim of the latent space (q)

Tuning: variance of the prior of Z and q̂ chosen by cross-validation using the ELBO 19



Results for Covid Patients

33 covariates, 26 confounders. 4137 patients.

ATE estimations (×100): effect of Hydroxychloroquine on 28day mortality

Matrix Facto.grf

GRF−MIA

MICE.grf

Matrix Facto.glm

MICE.glm

−50 −25 0 25 50
ATE (x 100)

Imputation.method

Matrix Facto

GRF−MIA

MICE

IPW

DR

Unadjusted

HCQ vs Nothing, ATE estimation (4137 patients)

(y -axis: estimation approach, solid: Doubly Robust AIPW, dotted: IPW),

(x-axis: ATE estimation with CI)

The obtained value corresponds to the difference in percentage points

between mortality rates in treatment and control.

Light Blue: unadjusted (-5.3)
20



Conclusion and perspectives

Take-away messages

• Missing attributes alter causal analyses. Performance of methods

depends on the underlying assumptions

Further details in original papers

Mayer, I, J., Wager, S., Sverdrup, E., Moyer, J.D. & Gauss, T. (2020). Doubly

robust treatment effect with missing attributes. Annals of Applied Statistics

Mayer, I., J., Raimundo, F. & Vert, J.-P. (2020). MissDeepCausal: causal

inference from incomplete data using deep latent variable models.

Sbidian, E. et al. (2020). Hydroxychloroquine with or without azithromycin and

in-hospital mortality or discharge in patients hospitalized for COVID-19 infection: a

cohort study of 4,642 in-patients in France.

Future work

• Coupling of observational data and RCT data

• Heterogeneous treatment effects

• Architecture of neural nets with missing values

• More with MNAR data

21
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Missing value website

More information and details on

missing values: R-miss-tastic

platform. (Mayer et al., 2019)

→ Theoretical and practical

tutorials, popular datasets,

bibliography, workflows (in R and

in python), active

contributors/researchers in the

community, etc.

rmisstastic.netlify.com

Interested in contribute to our platform? Feel free to contact us!
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Observational data: non random assignment

⇒ Treatment assignment W depends on covariates X .

Distribution of covariates of treated and control are different.



1. Unconfoundedness despite missingness

Adapt the initial assumptions s.t. treatment assignment is unconfounded

given only the observed covariates and the response pattern.

Notations

Mask R ∈ {0, 1}d , Rij = 1 when Xij is missing and 0 otherwise

X ∗ , (1− R)� X + R � NA ∈ {R ∪ NA}d

Unconfoundedness despite missingness

{Yi (1),Yi (0)} ⊥⊥Wi |X ∗

CIT:Wi ⊥⊥ Xi |X ∗i ,Ri or CIO:Yi (w) ⊥⊥ Xi |X ∗i ,Ri for w ∈ {0, 1}

X X∗ R

W Y{Y (0), Y (1)}

X X∗ R

W Y{Y (0), Y (1)}



Mean imputation

• (xi , yi ) ∼
i.i.d.
N2((µx , µy ),Σxy )

• 70 % of missing entries completely at random on Y

• Estimate parameters on the mean imputed data
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Mean imputation

• (xi , yi ) ∼
i.i.d.
N2((µx , µy ),Σxy )

• 70 % of missing entries completely at random on Y

• Estimate parameters on the mean imputed data

X Y
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Mean imputation

• (xi , yi ) ∼
i.i.d.
N2((µx , µy ),Σxy )

• 70 % of missing entries completely at random on Y

• Estimate parameters on the mean imputed data

X Y
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Mean imputation deforms joint and marginal distributions



Mean imputation is bad for estimation
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Variables factor map (PCA)

Dim 1 (91.18%)

D
im

 2
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4.
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%
)

LL

LMA

Nmass
Pmass

Amass

Rmass

library(FactoMineR)

PCA(ecolo)

Warning message: Missing

are imputed by the mean

of the variable:

You should use imputePCA

from missMDA

library(missMDA)

imp <- imputePCA(ecolo)

PCA(imp$comp)

Ecological data: 3 n = 69000 species - 6 traits. Estimated correlation between

Pmass & Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)

3Wright, I. et al. (2004). The worldwide leaf economics spectrum. Nature.



Imputation methods

• by regression takes into account the relationship: Estimate β - impute

ŷi = β̂0 + β̂1xi ⇒ variance underestimated and correlation overestimated

• by stochastic reg: Estimate β and σ - impute from the predictive

yi ∼ N
(
xi β̂, σ̂

2
)
⇒ preserve distributions

Here β̂, σ̂2 estimated with complete data, but MLE can be obtained with EM
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Stochastic regression imputation

X

Y

●

●

●
●

●

●

●

●●●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

µy = 0

σy = 1

ρxy = 0.6

0.01

0.5

0.30

0.01

0.72

0.78

0.01

0.99
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Imputation methods for multivariate data

Assuming a joint model

• Gaussian distribution: xi. ∼ N (µ,Σ) (Amelia Honaker, King, Blackwell)

• low rank: Xn×d = µn×d + ε εij
iid∼N

(
0, σ2

)
with µ of low rank k

(softimpute Hastie & Mazuder; missMDA J. & Husson)

• latent class - nonparametric Bayesian (dpmpm Reiter)

• deep learning using variational autoencoders (MIWAE, Mattei, 2018)

Using conditional models (joint implicitly defined)

• with logistic, multinomial, poisson regressions (mice van Buuren)

• iterative impute each variable by random forests (missForest Stekhoven)

Imputation for categorical, mixed, blocks/multilevel data 4, etc.

⇒ Missing values plateform5 J., Mayer., Tierney, Vialaneix

4J., Husson, Robin & Narasimhan. (2018). Imputation of mixed data with multilevel SVD.
5https://rmisstastic.netlify.com/

https://gking.harvard.edu/amelia
https://rmisstastic.netlify.com/
https://rmisstastic.netlify.com/


Mean imputation consistent

Learn on the mean-imputed training data, impute the test set with the

same means and predict is optimal if the missing data are MAR and the

learning algorithm is universally consistent

Framework - assumptions

• Y = f (X ) + ε

• X = (X1, . . . ,Xd) has a continuous density g > 0 on [0, 1]d

• ‖f ‖∞ <∞
• Missing data MAR on X1 with R1 |= X1|X2, . . . ,Xd .

• (x2, . . . , xd) 7→ P[R1 = 1|X2 = x2, . . . ,Xd = xd ] is continuous

• ε is a centered noise independent of (X ,R1)

(remains valid when missing values occur for variables X1, . . . , Xj)



Mean imputation consistent

Learn on the mean-imputed training data, impute the test set with the

same means and predict is optimal if the missing data are MAR and the

learning algorithm is universally consistent

Mean imputed entry x ′ = (x ′1, x2, . . . , xd): x ′1 = x11R1=0 + E[X1]1R1=1

X̃ = X � (1− R) + NA� R (takes value in R ∪ {NA})

Theorem

Prediction with mean is equal to the Bayes function almost everywhere

f ?impute(x ′) = E[Y |X ∗ = x∗]

Other values than the mean are OK but use the same value for the train

and test sets, otherwise the algorithm may fail as the distributions differ



Consistency of supervised learning with NA: Rationale

• Specific value, systematic like a code for missing

• The learner detects the code and recognizes it at the test time

• With categorical data, just code ”Missing”

• With continuous data, any constant:

• Need a lot of data (asymptotic result) and a super powerful learner
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Train Test

Mean imputation not bad for prediction; it is consistent; despite its

drawbacks for estimation - Useful in practice!



Consistency of supervised learning with NA: Rationale

• Specific value, systematic like a code for missing

• The learner detects the code and recognizes it at the test time

• With categorical data, just code ”Missing”

• With continuous data, any constant: out of range

• Need a lot of data (asymptotic result) and a super powerful learner
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Train Test

Mean imputation not bad for prediction; it is consistent; despite its

drawbacks for estimation - Useful in practice!



Consistency: 40% missing values MCAR
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End-to-end learning with missing values

NA NA

NA

NA

NA NA

NA

Xtrain Ytrain

NA NA

NA

NA

NA NA

NA

Xtest Ŷtest

f̂

prediction learner

• Random forests powerful learner

• Trees well suited for empirical risk minimization with missing values:

Handle half discrete data X ∗ that takes values in R ∪ {NA}



CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the

feature j?, the threshold z? which minimises the (quadratic) loss

(j?, z?) ∈ arg min
(j,z)∈S

E
[(
Y − E[Y |Xj ≤ z ]

)2 · 1Xj≤z

+
(
Y − E[Y |Xj > z ]

)2 · 1Xj>z

]
.

X1

X2 root

X1 ≤ 3.3 X1 > 3.3

X2 ≤ 1.5 X2 > 1.5
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+
(
Y − E[Y |Xj > z ]

)2 · 1Xj>z

]
.

X1

X2 root

X1 ≤ 3.3 X1 > 3.3

X2 ≤ 1.5 X2 > 1.5
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CART with missing values

X1 X2 Y

1

2 NA

3 NA

4

root

X1 ≤ s1 X1 > s1

X2 ≤ s2 X2 > s2

1) Select variable and threshold on observed data 6

E
[(

Y − E[Y |Xj ≤ z,Rj = 0]
)2 · 1Xj≤z,Rj =0 +

(
Y − E[Y |Xj > z,Rj = NA]

)2 · 1Xj>z,Rj =0

]
.

2) Propagate observations (2 & 3) with missing values?

• Probabilistic split: Bernoulli( #L
#L+#R ) (Rweeka)

• Block: Send all to a side by minimizing the error (xgboost, lightgbm)

• Surrogate split: Search another variable that gives a close partition (rpart)

6

Variable selection bias (not a problem to predict): partykit package, Hothorn, et al.
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Missing incorporated in attribute (Twala et al. 2008)

One step: select the variable, the threshold and propagate missing values.

Use missingness to make the best possible splits.

f ? ∈ arg min
f∈Pc,miss

E
[(
Y − f (X ∗)

)2
]
,

where Pc,miss = Pc,miss,L ∪ Pc,miss,R ∪ Pc,miss,sep with

1. Pc,miss,L → {{X ∗j ≤ z ∨ X ∗j = NA}, {X ∗j > z}}
2. Pc,miss,R → {{X ∗j ≤ z}, {X ∗j > z ∨ X ∗j = NA}}
3. Pc,miss,sep → {{X ∗j 6= NA}, {X ∗j = NA}}.

• Missing values treated like a category (well to handle R ∪ NA)

• Good for informative pattern (R explains Y )

• Implementation trick: duplicate the incomplete columns, and replace

the missing entries once by +∞ and once by −∞ (J. Tibshirani)
7

Target model/pattern: E [Y |X ∗] =
∑

r∈{0,1}d E
[
Y |Xobs(r),R = r

]
1R=r

Does not require the missing data to be MAR.
7Implemented for conditional forests partykit, generalized random forest grf, scikitlearn


