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Outline

Part I: Multiple Imputation

How does multiple imputation work?

The ideas behind MI

Understanding sources of uncertainty

Implementation of MI and MICE

Part II: Multiple Imputation Workflow

How to perform MI with the mice package in R, from getting to know
the data to the final results.

Practical: Imputation with mice
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Outline (cont.)

Part III: When MICE might fail

Introduction to

settings where standard use of mice is problematic

alternative imputation approaches

alternative R packages

Practical: Imputation in complex settings

Part IV: Multiple Imputation Strategies

Some tips & tricks
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Part I

Multiple Imputation
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Outline of Part I

1. What is Multiple Imputation?
1.1 History & Ideas
1.2 Three steps

2. Imputation step
2.1 Univariate missing data
2.2 Multivariate missing data
2.3 FCS/MICE
2.4 Checking convergence

3. Analysis step
4. Pooling

4.1 Why pooling?
4.2 Rubin’s Rules

5. A closer look at the imputation step
5.1 Bayesian multiple imputation
5.2 Bootstrap multiple imputation
5.3 Semi-parametric imputation
5.4 What is implemented in

software?
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1. What is Multiple Imputation?
1.1. History & Ideas

Developed by Donald B. Rubin in the 1970s,

to handle missing values in public use databases,
e.g., census data provided by the government,

motivated by the increase in missing values, and

increased availability of computers.

Such data should be usable by [11]

a large number of analysts, who commonly have to rely on

standard software that can only handle complete data, and usually

are not experts in handling incomplete data.
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1. What is Multiple Imputation?
1.1. History & Ideas

Rubin’s thoughts: [12]

One imputed value can not be
correct in general.
á We need to represent missing
values by a number of imputations.

á

To find sensible values to fill
in, we need some kind of
model.

á

Missing data has a distribution. á
This distribution depends on
assumptions that have been
made about the model.á

What we want to impute is the
‘predictive distribution’ of the missing values given the observed values.

6 / 225



1. What is Multiple Imputation?
1.1. History & Ideas

Rubin’s thoughts: [12]

One imputed value can not be
correct in general.
á We need to represent missing
values by a number of imputations.á

To find sensible values to fill
in, we need some kind of
model. á

Missing data has a distribution. á
This distribution depends on
assumptions that have been
made about the model.

á

What we want to impute is the
‘predictive distribution’ of the missing values given the observed values.

6 / 225



1. What is Multiple Imputation?
1.1. History & Ideas

Rubin’s thoughts: [12]

One imputed value can not be
correct in general.
á We need to represent missing
values by a number of imputations.á

To find sensible values to fill
in, we need some kind of
model. á

Missing data has a distribution. á
This distribution depends on
assumptions that have been
made about the model.á

What we want to impute is the
‘predictive distribution’ of the missing values given the observed values.

6 / 225



1. What is Multiple Imputation?
1.1. History & Ideas

How to obtain that predictive distribution?
Rubin suggests to

fit a model to the observed data (“respondents”), and to

obtain for each “nonrespondent” the conditional distribution of the missing
data (given the observed data) as if he/she was a respondent.

á We assume nonrespondents are just like respondents, and obtain the
predictive distribution from the model of the respondents data.

Example: survey about age, gender and height

Boys aged 10 – 12 years old answered (on average) that they are 1.45m tall.
á We assume that boys aged 10 to 12 who did not report their height

are also around 1.45m tall.
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1. What is Multiple Imputation?
1.1. History & Ideas

How to represent the multiple imputed values?
For each missing value, we now have multiple imputed values.

For each set of imputed values, create a dataset
(those datasets agree in the observed values but imputed values differ).

Analyse each dataset, and

take the results from each analysis.

á We can describe how (much) the results vary between the imputed
datasets, and calculate summary measures.
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1. What is Multiple Imputation?
1.2. Three steps

 

incomplete 

data 

multiple 
imputed 
datasets 

pooled 

results 

analysis 

results 

In summary:

1. Imputation: impute multiple times á multiple completed datasets

2. Analysis: analyse each of the datasets

3. Pooling: combine results, taking into account additional uncertainty
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2. Imputation step
2.1. Univariate missing data

How can we actually get imputed values?

For now: assume only one continuous variable has
missing values (univariate missing data)

X1 X2 X3 X4

X NA X X
X X X X
X NA X X
...

...
...

...

Idea: Predict values

Model:
xi2 = β0 + β1xi1 + β2xi3 + β3xi4 + εi

Imputed/predicted value:
x̂i2 = β̂0 + β̂1xi1 + β̂2xi3 + β̂3xi4
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2. Imputation step
2.1. Univariate missing data

Problem:

We can obtain only one imputed value per missing value, but we wanted
a whole distribution.

The predicted values do not take into account the added uncertainty due
to the missing values.

á We need to take into account two sources of uncertainty:

The parameters are estimated with uncertainty
(represented by the std. error).

There is random variation / prediction error
(variation of the residuals).
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2. Imputation step
2.1. Univariate missing data

Taking into account uncertainty about the parameters β:
We assume that β has a distribution, and we can sample realizations of β
from that distribution.

When plugging the different realizations
of β into the predictive model, we
obtain slightly different regression
lines.

With each set of coefficients, we also
get slightly different predicted values.

X1

X
2

missing
observed
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2. Imputation step
2.1. Univariate missing data

Taking into account the prediction error:
The model does not fit the data perfectly: observations are scattered around
the regression lines.

We assume that the data have a
distribution, where

the mean for each value is given
by the predictive model, and

the variance is determined by the
variance of the residuals ε.

X1

X
2

missing
observed

In the end, we obtain one imputed dataset for each color.
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2. Imputation step
2.2. Multivariate missing data

Multivariate missing data:
What if we have missing values in more than one variable?

In case of monotone missing values we can use
the technique for univariate missing data in a chain:
impute x4 given x1

impute x3 given x1 and x4

impute x2 given x1, x4 and x3

X1 X2 X3 X4

X NA X X
X NA NA X
X NA NA NA
...

...
...

...

When we have non-monotone missing data there
is no sequence without conditioning on unobserved
values.

X1 X2 X3 X4

X NA X X
NA X NA NA
X NA X NA
...

...
...

...
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2. Imputation step
2.2. Multivariate missing data

There are two popular approaches for the imputation step in multivariate
non-monotone missing data:

Fully conditional specification

Multiple Imputation using Chained Equations (MICE)

sometimes also: sequential regression

Implemented in SPSS, R, Stata, SAS, . . .

our focus here

Joint model imputation

(more details later)
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2. Imputation step
2.2. Multivariate missing data

Markov Chain Monte Carlo
is a technique to draw samples from a complex probability distribution by
creating a chain of random variables (a Markov Chain). The distribution each
element in the chain is sampled from depends on the value of the previous
element. When certain conditions are met, the chain eventually stabilizes and
by continuing to sample elements of the chain a sample from the complex
distribution of interest can be obtained.

Gibbs sampling
is an MCMC method where a sample from a multivariate distribution is
obtained by repeatedly drawing from each of the univariate full conditional
distributions instead.

16 / 225
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2. Imputation step
2.3. FCS/MICE

MICE (Multiple Imputation using Chained Equations) or
FCS (multiple imputation using Fully Conditional Specification)

extends univariable imputation to the setting with multivariate non-monotone
missingness:

MICE/FCS

imputes multivariate missing data on a variable-by-variable basis,

using the technique for univariate missing data.

Moreover, MICE/FCS is

an iterative procedure, specifically

a Markov Chain Monte Carlo (MCMC) method,

uses the idea of the Gibbs sampler, and

is a Gibbs sampler if the conditional distributions are compatible
(we will come back to this)
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2. Imputation step
2.3. FCS/MICE

Notation

X : n × p data matrix with n rows and p variables x1, . . . , xp

R: n × p missing indicator matrix containing 0 (missing) or 1 (observed)

X =

X−2 X2 X−2

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p

R =

R1,1 R1,2 . . . R1,p

R2,1 R2,2 . . . R2,p
...

...
. . .

...
Rn,1 Rn,2 . . . Rn,p

For example:

X =

X1 X2 X3 X4

X NA X X
X X NA NA
X NA X NA

á R =
1 0 1 1
1 1 0 0
1 0 1 0

18 / 225



2. Imputation step
2.3. FCS/MICE

Notation

X : n × p data matrix with n rows and p variables x1, . . . , xp

R: n × p missing indicator matrix containing 0 (missing) or 1 (observed)

X =

X−2 X2 X−2

x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
. . .

...
xn,1 xn,2 . . . xn,p

R =

R1,1 R1,2 . . . R1,p

R2,1 R2,2 . . . R2,p
...

...
. . .

...
Rn,1 Rn,2 . . . Rn,p

For example:

X =

X1 X2 X3 X4

X NA X X
X X NA NA
X NA X NA

á R =
1 0 1 1
1 1 0 0
1 0 1 0

18 / 225



2. Imputation step
2.3. FCS/MICE

Algorithm 1 MICE algorithm [17] for one imputed dataset

1: for j in 1, . . . , p: . Setup
2: Specify imputation model for variable Xj

p(Xmis
j | X obs

j ,X−j ,R)

3: Fill in starting imputations Ẋ 0
j by random draws from X obs

j .
4: end for

5: for t in 1, . . . ,T : . loop through iterations
6: for j in 1, . . . , p: . loop through variables

7: Define currently complete data except Xj

Ẋ t
−j =

(
Ẋ t

1 , . . . , Ẋ
t
j−1, Ẋ

t−1
j+1 , . . . , Ẋ

t−1
p

)
.

8: Draw parameters θ̇tj ∼ p(θtj | X obs
j , Ẋ t

−j ,R).

9: Draw imputations Ẋ t
j ∼ p(Xmis

j | Ẋ t
−j ,R, θ̇

t
j ).

10: end for
11: end for
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j by random draws from X obs

j .
4: end for

5: for t in 1, . . . ,T : . loop through iterations
6: for j in 1, . . . , p: . loop through variables

7: Define currently complete data except Xj
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j by random draws from X obs

j .
4: end for

5: for t in 1, . . . ,T : . loop through iterations
6: for j in 1, . . . , p: . loop through variables
7: Define currently complete data except Xj
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j ∼ p(Xmis

j | Ẋ t
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j by random draws from X obs

j .
4: end for

5: for t = 1: . loop through iterations
6: for j = 2: . loop through variables
7: Define currently complete data except X2
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−3,R).

9: Draw imputations Ẋ 1
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1
2 , Ẋ
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2: Specify imputation model for variable Xj

p(Xmis
j | X obs

j ,X−j ,R)

3: Fill in starting imputations Ẋ 0
j by random draws from X obs

j .
4: end for

5: for t = 2: . loop through iterations
6: for j = 1: . loop through variables
7: Define currently complete data except X1

Ẋ 2
−1 =

(
Ẋ 1

2 , Ẋ
1
3 , Ẋ

1
4

)
.

8: Draw parameters θ̇2
1 ∼ p(θ2

1 | X obs
1 , Ẋ 2

−1,R).

9: Draw imputations Ẋ 2
1 ∼ p(Xmis
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−1,R, θ̇

2
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2. Imputation step
2.3. FCS/MICE

The imputed values from the last iteration,(
ẊT

1 , . . . , Ẋ
T
p

)
,

are then used to replace the missing values in the original data.

One run through the algorithm á one imputed dataset.

á To obtain m imputed datasets: repeat m times

We refer to the sequence of imputations for one missing value, from starting
value to final iteration, as a chain. Each run through the MICE algorithm
produces one chain per missing value.
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ẊT

1 , . . . , Ẋ
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2. Imputation step
2.3. FCS/MICE

Why iterations?

Imputed values in one variable depend on the imputed values of the other
variables (Gibbs sampling).

If the starting values (random draws) are far from the actual distribution,
imputed values from the first few iterations are not draws from the
distribution of interest.

How many iterations?
Until convergence
= when the sampling distribution does not change any more
(Note: the imputed value will still vary between iterations.)

How to evaluate convergence?
The traceplot (x-axis: iteration number, y-axis: imputed value) should show a
horizontal band
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2. Imputation step
2.4. Checking convergence
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chain 3

Each chain is the sequence of imputed values (from starting value to final
imputed value) for the same missing value.
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2. Imputation step
2.4. Checking convergence

In imputation we have

several variables with missing values (e.g., p)

several missing values in each of these variables

m chains for each missing value

á possibly a large number of MCMC chain

To check all chains separately could be very time consuming in large datasets
(and storing all iterations from all imputed values is inefficient).

Alternative: Calculate and plot a summary (e.g., the mean) of the imputed
values over all subjects, separately per chain and variable
á only m × p chains to check
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2. Imputation step
2.4. Checking convergence
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2. Imputation step
2.4. Checking convergence
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3. Analysis step

Multiple imputed datasets:
X1 X2 X3 X4

1.4 9.2 1.8 2.0
0.5 12.4 2.3 0.1
-0.5 10.7 2.6 -1.6

...
...

...
...

X1 X2 X3 X4

1.4 13.3 1.8 2.0
0.5 12.4 2.1 0.6
-0.5 10.2 2.6 -1.7

...
...

...
...

X1 X2 X3 X4

1.4 10.0 1.8 2.0
0.5 12.4 2.2 -1.4
-0.5 8.6 2.6 -1.0

...
...

...
...

Analysis model of interest, e.g.,

x1 = β0 + β1x2 + β2x3 + β3x4

Multiple sets of results:
est. se

β0 0.35 0.21
β1 0.14 0.02
β2 -0.64 0.03
β3 0.18 0.03

est. se

β0 0.44 0.23
β1 0.12 0.01
β2 -0.61 0.03
β3 0.22 0.03

est. se

β0 0.19 0.21
β1 0.14 0.01
β2 -0.59 0.03
β3 0.2 0.03
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4. Pooling
4.1. Why pooling?

Recall from slide 6:
We need to represent missing values by a number of imputations.
á m imputed datasets

From the different imputed datasets we get different sets of parameter
estimates, each of them with a standard error, representing the uncertainty
about the estimate.

We want to summarize the results and describe how (much) the results vary
between the imputed datasets.
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4. Pooling
4.1. Why pooling?

In the results from multiply imputed data there are two types of
variation/uncertainty:

within imputation (represented by the confidence intervals)

between imputation (horizontal shift between imputations)

(Intercept) x2 x3 x4

imp 1

imp 2

imp 3

parameter estimate & 95% confidence interval
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4. Pooling
4.1. Why pooling?

To summarize the results, we can take the mean of the results from the
separate analyses. This is the pooled point estimate.

(Intercept) x2 x3 x4

imp 1

imp 2

imp 3

parameter estimate & 95% confidence interval

But does the same work for the std. error (or bounds of the CIs)?

The averaged CI’s (marked in red) seem to underestimate the total variation
(within + between).
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4. Pooling
4.2. Rubin’s Rules

The most commonly used method to pool results from analyses of multiply
imputed data was introduced by Rubin [10], hence Rubin’s Rules.

Notation:
m: number of imputed datasets
Q`: quantity of interest (e.g., regr. parameter β) from `-th imputation
U`: variance of Q` (e.g., var(β) = se(β)2)

Pooled parameter estimate:

Q̄ =
1

m

m∑
`=1

Q̂`
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4. Pooling
4.2. Rubin’s Rules

The variance of the pooled parameter estimate is calculated from the within
and between imputation variance.

Average within imputation variance:

Ū =
1

m

m∑
`=1

Û`

Between imputation variance:

B =
1

m − 1

m∑
`=1

(
Q̂` − Q̄

)T (
Q̂` − Q̄

)

Total variance:
T = Ū + B + B/m
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4. Pooling
4.2. Rubin’s Rules

Confidence intervals for pooled estimates can be obtained using the pooled
standard error

√
T and a reference t distribution with degrees of freedom

ν = (m − 1)
(
1 + r−1

m

)2
,

where rm = (B+B/m)

Ū
is the relative increase in variance that is due to the

missing values.

The (1− α) 100% confidence interval is then

Q̄ ± tν(α/2)
√
T ,

where tν is the α/2 quantile of the t distribution with ν degrees of freedom.
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4. Pooling
4.2. Rubin’s Rules

(Intercept) x2 x3 x4

imp 1

imp 2

imp 3

parameter estimate & 95% confidence interval

The corresponding p-value is the probability

Pr
{
F1,ν >

(
Q0 − Q̄

)2
/T
}
,

where F1,ν is a random variable that has an F distribution with 1 and ν degrees
of freedom, and Q0 is the null hypothesis value (typically zero).
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Quiz

To reiterate the content of the above sections, you can take the corresponding
quiz. An interactive version can be found at

https://emcbiostatistics.shinyapps.io/MICourse_Quiz_PartI

or you can download an html version from Canvas
(Files > Principal documents > Multiple Imputation > Quiz PartI static.html).
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5. A closer look at the imputation step
5.1. Bayesian multiple imputation

The imputation step consists itself of two (or three) steps:

0. Specification of the imputation model,

1. estimation or sampling of the parameters, and

2. drawing imputed values from the predictive distribution.

Notation:
Let y be the incomplete covariate to be imputed, and X the design matrix of
other (complete or imputed) variables.

y =

yobs

{

ymis

{


y1
...
yq
NA

...
NA


X =

X obs

{

Xmis

{


1 x11 . . . x1p
...

... . . .
...

1 xq1 . . . xqp
1 xq+1,1 . . . xq+1,p
...

... . . .
...

1 xn1 . . . xnp
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5. A closer look at the imputation step
5.1. Bayesian multiple imputation

In the Bayesian framework, everything unknown or unobserved is considered
as a random variable. Here, this includes for example regression coefficients β,
residual variance σ2 and missing values ymis and Xmis .

Random variables have a probability distribution. The expectation of that
distribution quantifies where which values of the random variable are most
likely, the variance is a measure of the uncertainty about the values.

In Bayesian imputation, the information obtained from the observed data
is used to estimate the probability distributions for the missing values and
unknown parameters, and values are imputed by draws from that posterior
(= after having seen the data) distribution.
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5. A closer look at the imputation step
5.1. Bayesian multiple imputation

To determine the expectation of the posterior distribution of the missing
values, usually a regression model is used, that depends on the unknown
coefficients β.

E(ymis | X ,β) = f (Xmisβ)

The posterior distribution of β and σ, p(β, σ | yobs ,X obs), is estimated from
the corresponding regression model on the observed data.

To impute missing values, while taking into account the uncertainty about
β and σ, the estimated posterior distributions of the missing values and
parameters are multiplied

p(ymis | Xmis ,β,σ) p(β, σ | yobs ,X obs)

In practice, this can be implemented by first making a draw from the posterior
distributions of β and σ, and plugging the values into the distribution of yobs .
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5. A closer look at the imputation step
5.1. Bayesian multiple imputation

Example: We assume that y given X is approximately normal.

Then p(ymis | Xmis ,β,σ) is a normal distribution and we can

draw β̃ from p(β | yobs ,X obs),

draw σ̃ from p(σ | yobs ,X obs),

draw ỹmis from a normal distribution with mean (= expectation) Xmis β̃
and variance σ̃2.

This is actually the approach we have seen previously on Slides 12/13 and 19.
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5. A closer look at the imputation step
5.2. Bootstrap multiple imputation

An alternative approach is to capture the uncertainty with bootstrap sampling.

In empirical Bootstrap, (many) replications of the data are created by
repeatedly drawing values from the original data.

observed
data

�
�
�
�7

@
@
@R

A
A
A
A
A
AU

bootstrap
sample

...

bootstrap
sample

bootstrap
sample

-

-

-

estimate
β̂ and σ̂

estimate
β̂ and σ̂

estimate
β̂ and σ̂

Bootstrap samples can contain
some observations multiple times
and some observations not at all.

The statistic of interest is then
calculated on each of the bootstrap
samples.
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5. A closer look at the imputation step
5.2. Bootstrap multiple imputation

In bootstrap multiple imputation,

one bootstrap sample of the observed data is created per imputation,

the (least squares or maximum likelihood) estimates of the parameters are
calculated from

yobs = X obsβ
↓
β̂

+ εobs
↓
σ̂

(step 1).

Imputed values are sampled from p(ymis | Xmis , β̂, σ̂) (step 2).

Analogous to Bayesian multiple imputation, for a normal imputation model, p()
is the normal distribution and

ỹmis = Xmis β̂ + ε̃

where ε̃ is drawn independently from N(0, σ̂2).
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5. A closer look at the imputation step
5.3. Semi-parametric imputation

Both Bayesian and bootstrap multiple imputation sample imputed values from
a distribution p() in step 2.

Sometimes, the empirical distribution can not be adequately approximated by a
known probability distribution.
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5. A closer look at the imputation step
5.3. Semi-parametric imputation

Predictive Mean Matching (PMM) was developed to provide a
semi-parametric approach to imputation for settings where the normal
distribution is not a good choice for the predictive distribution.[8, 9]

The idea is to find cases in the observed data that are similar to the cases
with missing values and to fill in the missing value with the observed value
from one of those cases.

To find similar cases, the predicted values of complete and incomplete cases are
compared.
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5. A closer look at the imputation step
5.3. Semi-parametric imputation

The steps in PMM:

1. Obtain parameter estimates for β̂ and σ̂ (see later)

2. Calculate the predicted values for the observed data

ŷobs = X obs β̂

3. Calculate the predicted value for the incomplete data

ŷmis = Xmis β̂

4. For each missing value, find d donor candidates that fulfill a given
criterium (details on the next slide).

5. Randomly select one of the donors.

43 / 225



5. A closer look at the imputation step
5.3. Semi-parametric imputation

Several criteria to select donors have been proposed:

1. The donor is the (one) case with the smallest absolute difference
|ŷmis,i − ŷobs,j | , j = 1, . . . , q.

2. Donor candidates are the d cases with the smallest absolute difference
|ŷmis,i − ŷobs,j | , j = 1, . . . , q. The donor is selected randomly from the
candidates.

3. Donor candidates are those cases for which the absolute difference is
smaller than some limit η: |ŷmis,i − ŷobs,j | < η, j = 1, . . . , q. The donor
is selected randomly from the candidates.

4. Select candidates like in 2. or 3., but select the donor from the candidates
with probability that depends on |ŷmis,i − ŷobs,j |.[16]
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5. A closer look at the imputation step
5.3. Semi-parametric imputation

Potential issues with donor selection

Selection criteria 2. - 4., require the number of candidates d (or
maximal difference η) to be specified. Common choices for d are 3, 5 or 10.

If the same donor is chosen in many/all imputations (e.g., because only a
few similar observed cases are available), the uncertainty about the
missing values will be underestimated.

á PMM may be problematic when

the dataset is very small,
the proportion of missing values is large, or
one/some predictor variable(s) are strongly related to the missingness.

Therefore, using d = 1 (selection criterion 1.) is not a good idea. On the
other hand, using too many candidates can lead to bad matches.

Schenker and Taylor [15] proposed an adaptive procedure to select d , but
it is not used much in practice.
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5. A closer look at the imputation step
5.3. Semi-parametric imputation

For the sampling of the parameters (step 1 on slide 43), different approaches
have been introduced in the literature:

Type-0 point estimates β̂ are used in both prediction models (least squares
or maximum likelihood)

Type-I β̂ to predict ŷobs ; β̃ to predict ŷmis is sampled from the posterior
distribution of β (Bayesian) or bootstrapped

Type-II β̃ to predict ŷobs as well as ŷmis

Type-III different draws β̃(1) and β̃(2) to predict ŷobs and ŷmis , respectively

The use of point estimates (Type-0 and Type-I matching) underestimates the
uncertainty about the regression parameters.
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5. A closer look at the imputation step
5.3. Semi-parametric imputation

Another point of consideration is the choice of the set of data used to train
the prediction models.

In the version presented on slide 43, the same set of data (all cases with
observed y) is used to train the model and to produce predicted values of yobs .

The predictive model will likely fit the observed cases better than the missing
cases, and, hence, variation will be underestimated.

As an alternative, the model could be trained on the whole data (using
previously imputed values) or to use a leave-one-out approach on the
observed data.
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5. A closer look at the imputation step
5.4. What is implemented in software?

mice (in R):

PMM via mice.impute.pmm()

specification of number of donors d (same for all variables)
Type-0, Type-I, Type-II matching

PMM via mice.impute.midastouch()

allows leave-one-out estimation of the parameters
distance based donor selection
Type-0, Type-I, Type-II matching

bootstrap linear regression via mice.impute.norm.boot()

bootstrap logistic regression via mice.impute.logreg.boot()

Bayesian linear regression via mice.impute.norm()

. . .
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Summary of Part I

1. What is Multiple Imputation?

Rubin’s two ideas:

Missing values need to be represented by multiple imputed values.

A model is necessary to obtain good imputations.

Imputed values are obtained from the predictive distribution of the
missing data, given the observed data.

Multiple completed datasets are created from the multiple imputed values.

Multiple imputation has three steps: Imputation, analysis, pooling
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Summary of Part I (cont.)

2. Imputation step

Two sources of variation need to be taken into account

parameter uncertainty
random variation

Two approaches to MI for imputation of non-monotone multivariate
missing data

MICE/FCS
Joint model imputation

The MICE algorithm re-uses univariate imputation models by iterating
through all incomplete variables, multiple times (iterations)

Multiple runs through the algorithm are necessary to create multiple
imputed dataset

The convergence of the chains needs to be checked.
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Summary of Part I (cont.)

3. Analysis step

Analyse each imputed dataset the way you would analyse a complete
dataset

4. Pooling

Results from analyses of multiple imputed datasets can be summarized by
taking the average of the regression coefficients

For the total variance, two sources of variation need to be considered:

within imputation variance
between imputation variance
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Summary of Part I (cont.)

5. A closer look at the imputation step

Two parametric approaches for imputation:

Bayesian (sample from posterior distribution of parameters)
Bootstrap (uses bootstrap samples of the data to estimate parameters)

Predictive mean matching is a semi-parametric alternative
(it matches observed and missing cases based on their predicted values).

In PMM we need to consider

donor selection
matching type (how parameters are sampled/estimated),
the set of data used to calculate/estimate the parameters.

Bayesian and bootstrap imputation take into account the variation, while
many choices in PMM lead to underestimation of the variation.
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Part II

Multiple Imputation Workflow
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Outline of Part II

6. Know your data
6.1 Missing data patterns
6.2 Data distributions
6.3 Correlations & patterns
6.4 Why are values missing?
6.5 Auxiliary variables

7. Imputation with mice()

7.1 Main function arguments
7.2 Imputation methods
7.3 Predictor matrix
7.4 Passive imputation
7.5 Post processing
7.6 Visit sequence
7.7 Good to know

8. Convergence & Diagnostics
8.1 Logged events
8.2 Convergence
8.3 Diagnostics

9. Analyse & pool the imputed data
9.1 Analysing imputed data
9.2 Pooling results
9.3 Functions for pooled results

10. Additional functions in mice()

10.1 Extract & export imputed data
10.2 Combining mids objects
10.3 Adding variables to mids objects

11. Multiple Imputation in SPSS
11.1 Where to get help
11.2 Multiple Imputation Features
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6. Know your data
6.1. Missing data patterns

To demonstrate the work flow when performing multiple imputation with the
mice package, we use data from the National Health and Nutrition
Examination Survey (NHANES).

There are several packages in R that provide functions to create and plot the
missing data pattern.

Examples are:
mice, VIM, Amelia, visdat, naniar, . . .
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6. Know your data
6.1. Missing data patterns

mdp <- mice::md.pattern(NHANES)

head(mdp[, -c(7:14)]) # omit some columns to fit it on the slide

## age gender race DM educ smoke hypchol creat albu uricacid bili alc HyperMed

## 572 1 1 1 1 1 1 1 1 1 1 1 1 1 0

## 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

## 141 1 1 1 1 1 1 1 1 1 1 1 0 1 1

## 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## 1063 1 1 1 1 1 1 1 1 1 1 1 1 0 1

## 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1

tail(mdp[, -c(7:14)])

## age gender race DM educ smoke hypchol creat albu uricacid bili alc HyperMed

## 2 1 1 1 1 1 1 0 0 0 0 0 0 1 11

## 2 1 1 1 1 1 1 0 0 0 0 0 0 0 12

## 1 1 1 1 1 0 1 0 0 0 0 0 1 0 12

## 1 1 1 1 1 1 1 0 0 0 0 0 0 0 12

## 2 1 1 1 1 1 1 0 0 0 0 0 0 0 14

## 0 0 0 0 1 4 175 184 184 185 188 627 1606 3975
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6. Know your data
6.1. Missing data patterns

par(mar = c(5, 0.5, 1, 3), mgp = c(2, 0.6, 0))

JointAI::md_pattern(NHANES, print = F, printN = F, yaxis_pars = list(yaxt = 'n'))
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6. Know your data
6.1. Missing data patterns

par(mar = c(6, 3, 2, 1))

VIM::aggr(NHANES, prop = T, numbers = FALSE)
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6. Know your data
6.1. Missing data patterns

visdat::vis_dat(NHANES, sort_type = FALSE)
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6. Know your data
6.1. Missing data patterns

visdat::vis_miss(NHANES)
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6. Know your data
6.1. Missing data patterns

# number and proportion of complete cases

Ncc <- cbind(

"#" = table(complete.cases(NHANES)),

"%" = round(100 * table(complete.cases(NHANES))/nrow(NHANES), 2)

)

rownames(Ncc) <- c("incompl.", "complete")

# number and proportion of missing values per variable

nmis <- cbind("# NA" = sort(colSums(is.na(NHANES))),

"% NA" = round(sort(colMeans(is.na(NHANES))) * 100, 2))
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6. Know your data
6.1. Missing data patterns

Number and proportion of (in)complete cases

## # %

## incompl. 1911 76.96

## complete 572 23.04

Number and proportion of missing values per variable

## # NA % NA

## age 0 0.00

## gender 0 0.00

## race 0 0.00

## DM 0 0.00

## educ 1 0.04

## smoke 4 0.16

## weight 40 1.61

## height 45 1.81

## BMI 73 2.94

## hypten 82 3.30

## SBP 115 4.63

## # NA % NA

## WC 116 4.67

## chol 175 7.05

## HDL 175 7.05

## hypchol 175 7.05

## creat 184 7.41

## albu 184 7.41

## uricacid 185 7.45

## bili 188 7.57

## alc 627 25.25

## HyperMed 1606 64.68
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6. Know your data
6.2. Data distributions
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6. Know your data
6.2. Data distributions
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6. Know your data
6.2. Data distributions

# syntax for continuous variables

NHANESnum <- NHANES[, sapply(NHANES, is.numeric)]

par(mfrow = c(3, 4), mar = c(3, 3.2, 0.5, 0.5), mgp = c(2, 0.6, 0))

for (i in 1:ncol(NHANESnum)) {
hist(NHANESnum[, i], nclass = 30, xlab = names(NHANESnum)[i], main = "")

legend("topright", bty = "n",

legend = paste0(round(mean(is.na(NHANESnum[, i]))*100, 2), "% NA"))

}

# syntax for factors

NHANESfac <- NHANES[, sapply(NHANES, is.factor)]

par(mfrow = c(3, 5), mar = c(3, 3.2, 2.5, 0.5), mgp = c(2, 0.6, 0))

for (i in 1:ncol(NHANESfac)) {
tab <- table(NHANESfac[, i], exclude = NULL)

names(tab)[is.na(names(tab))] <- "NA"

barplot(tab, main = paste0(names(NHANESfac)[i]," (",

round(mean(is.na(NHANESfac[, i]))*100,

2), "% NA)"))

}
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6. Know your data
6.3. Correlations & patterns

A quick (and dirty) way to check for strong correlations between variables is:

# re-code all variables as numeric and calculate spearman correlation

Corr <- cor(sapply(NHANES, as.numeric),

use = "pairwise.complete.obs", method = "spearman")

## Warning in cor(sapply(NHANES, as.numeric), use =

"pairwise.complete.obs", : the standard deviation is zero

corrplot::corrplot(Corr, method = "square", type = "upper",

tl.col = "black")

Note: We only use the correlation coefficient for categorical variables in this
visualization, not as a statistical result!
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6. Know your data
6.3. Correlations & patterns
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6. Know your data
6.3. Correlations & patterns

Check out what the problem is with hypertension and HyperMed:

table(hypertension = NHANES$hypten,

HyperMed = NHANES$HyperMed, exclude = NULL)

## HyperMed

## hypertension no previous yes <NA>

## no 0 0 0 1397

## yes 114 90 673 127

## <NA> 0 0 0 82
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6. Know your data
6.4. Why are values missing?

Knowing your data also means to be able to answer these questions:

Do missing values in multiple variables always occur together?
(e.g. blood measurements)

Are there structural missing values? (e.g. pregnancy status in men)

Are there patterns in the missing values?
(e.g. only patients with hypertension have observations of HyperMed)

Are values missing by design?

Is the assumption of ignorable missingness (MAR or MCAR) justifiable?
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6. Know your data
6.5. Auxiliary variables

Auxiliary variables are variables that are not part of the analysis but can help
during imputation.

Good auxiliary variables

are related to the probability of missingness in a variable, or

are related to the incomplete variable itself,

do not have many missing values themselves and

are (mostly) observed when the incomplete variable of interest is missing.
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7. Imputation with mice()
7.1. Main function arguments

The main arguments needed to impute data with mice() are:

data: the dataset

m: number of imputed datasets (default is 5)

maxit: number of iterations (default is 5)

method: vector of imputation methods

defaultMethod: vector of default imputation methods for numerical,
binary, unordered and ordered factors with > 2 levels
(default is c("pmm", "logreg", "polyreg", "polr"))

predictorMatrix: matrix specifying roles of variables
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7. Imputation with mice()
7.2. Imputation methods

mice has implemented many imputation methods, the most commonly used
ones are:

pmm: predictive mean matching (any)

norm: Bayesian linear regression (numeric)

logreg: binary logistic regression (binary)

polr: proportional odds model (ordered factors)

polyreg: polytomous logistic regression (unordered factors)
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7. Imputation with mice()
7.2. Imputation methods

Change the default imputation method:
Example: To use norm instead of pmm for all continuous incomplete variables,
use:

mice(NHANES, defaultMethod = c("norm", "logreg", "polyreg", "polr"))

Change imputation method for a single variable:
To change the imputation method for single variables (but also for changes in
other arguments) it is convenient to do a setup run of mice() without
iterations (maxit = 0) and to extract and modify the parameters from there.

Exclude variable from imputation:
When a variable that has missing values should not be imputed, the method
needs to be set to "".
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7. Imputation with mice()
7.2. Imputation methods

library(mice)

imp0 <- mice(NHANES, maxit = 0)

meth <- imp0$method

meth

## age gender race bili chol HDL

## "" "" "" "pmm" "pmm" "pmm"

## hypten hypchol DM smoke alc educ

## "logreg" "logreg" "" "polr" "polr" "polyreg"

## SBP HyperMed creat albu uricacid WC

## "pmm" "polr" "pmm" "pmm" "pmm" "pmm"

## height weight BMI

## "pmm" "pmm" "pmm"

meth["albu"] <- "norm"

meth["HyperMed"] <- ""

# imp <- mice(NHANES, method = meth)
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7. Imputation with mice()
7.3. Predictor matrix

The predictorMatrix is a matrix that specifies which variables are used as
predictors in which imputation model.
Each row represents the model for the variable given in the rowname.

head(imp0$predictorMatrix)[, 1:11]

## age gender race bili chol HDL hypten hypchol DM smoke alc

## age 0 0 0 0 0 0 0 0 0 0 0

## gender 0 0 0 0 0 0 0 0 0 0 0

## race 0 0 0 0 0 0 0 0 0 0 0

## bili 1 1 1 0 1 1 1 1 1 1 1

## chol 1 1 1 1 0 1 1 1 1 1 1

## HDL 1 1 1 1 1 0 1 1 1 1 1

Variables not used as predictor are (or have to be set to) zero.

By default, all variables (except the variable itself) are used as predictor.
For complete variables all entries are 0.

75 / 225



7. Imputation with mice()
7.3. Predictor matrix

Important:
A variable that has missing values needs to be imputed in order to be used
as predictor for other imputation models!!!

Note:
By default, ALL variables with missing values are imputed and ALL variables
are used as predictor variables.
á Make sure to adjust the predictorMatrix and method to avoid using ID
variables or other columns of the data that should not be part of the imputation.

á Make sure all variables are coded correctly, so that the automatically
chosen imputation models are appropriate.
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7. Imputation with mice()
7.3. Predictor matrix

library(mice)

imp0 <- mice(NHANES, maxit = 0,

defaultMethod = c("norm", "logreg", "polyreg", "polr"))

meth <- imp0$method

meth["educ"] <- "polr"

meth["HyperMed"] <- ""

pred <- imp0$predictorMatrix

pred[, "HyperMed"] <- 0

imp <- mice(NHANES, method = meth, predictorMatrix = pred,

printFlag = F)
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7. Imputation with mice()
7.4. Passive imputation

In some cases, variables are functions of other variables, e.g., BMI = weight
height2 .

If we impute BMI directly, its values may be inconsistent with the (imputed)
values of height and weight.

DF1 <- complete(imp, 1) # select the first imputed dataset

round(cbind("wgt/hgt^2" = DF1$weight/DF1$height^2,

BMI = DF1$BMI)[is.na(NHANES$BMI), ], 2)[1:5, ]

## wgt/hgt^2 BMI

## [1,] 27.25 28.77

## [2,] 23.80 22.94

## [3,] 25.77 24.06

## [4,] 27.56 27.50

## [5,] 23.75 24.07

The imputed values of BMI are impossible given the corresponding values of
height and weight.
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7. Imputation with mice()
7.4. Passive imputation

Moreover, if some components of a variable are observed we want to use that
information to reduce uncertainty.

table(weight_missing = is.na(NHANES$weight),

height_missing = is.na(NHANES$height))

## height_missing

## weight_missing FALSE TRUE

## FALSE 2410 33

## TRUE 28 12

Here we have 33 + 28 = 61 cases in which either height or weight is
observed.

We would like to impute height and weight separately and calculate BMI from
the (imputed) values of the two variables.
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7. Imputation with mice()
7.4. Passive imputation

If BMI is not a relevant predictor in any of the other imputation models, we
could just exclude BMI from the imputation and re-calculate it afterwards.

To use BMI as predictor in the imputation, it has to be calculated in each
iteration of the algorithm. In mice this is possible with passive imputation.

Instead of using a standard imputation method, we can specify a formula to
calculate BMI:

meth["BMI"] <- "~I(weight/height^2)" # formula to impute BMI

pred[c("weight", "height"), "BMI"] <- 0 # prevent feedback

To prevent feedback from BMI in the imputation of height and weight the
predictorMatrix needs to be modified.
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7. Imputation with mice()
7.4. Passive imputation

Since BMI depends on weight, and the two variables are highly correlated
(ρ =0.87) it may be beneficial not to use them simultaneously as predictors
in the other imputation models.
Which one to use may differ between imputation models.

Passive imputation can also be useful in settings where

imputation models include an interaction terms between incomplete
variables (see [17, p. 133] for an example), or when

a number of covariates is used to form a sum score. The sum score,
instead of all single elements, can then be used as predictor in other
imputation models.
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7. Imputation with mice()
7.5. Post processing

mice() has an argument post that can be used to specify functions that
modify imputed values.

Helpful functions are

squeeze() to censor variables at given boundaries

ifdo() for conditional manipulation (not yet implemented)

Example:
When inspecting the imputed values from imp, we find that some imputed
values in creat are negative.

# DF1 is the first imputed dataset we extracted earlier

summary(DF1$creat)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.6155 0.7000 0.8300 0.8853 0.9900 9.5100

82 / 225



7. Imputation with mice()
7.5. Post processing
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7. Imputation with mice()
7.5. Post processing

With the following syntax all imputed values of creat that are outside the
interval c(0, 100) will be set to those limiting values.

post <- imp$post

post["creat"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i], c(0, 100))"

imp2 <- update(imp, post = post, maxit = 20, seed = 123)

Note:
When many observations are outside the limits it may be better to change the
imputation model since the implied assumption of the imputation model
apparently does not fit the (assumption about the) complete data
distribution.
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7. Imputation with mice()
7.5. Post processing

This post-processing of imputed values allows for many more data
manipulations and is not restricted to squeeze() (and ifdo()).

Any strings of R commands provided will be evaluated after the corresponding
variable is imputed, within each iteration.

For example, if subjects with SBP > 140 should be classified as hypertensive:

post["hypten"] <- "imp[[j]][p$data[where[, j], 'SBP'] > 140, i] <- 'yes'"

This also allows for (some) MNAR scenarios, for example, by multiplying or
adding a constant to the imputed values or to re-impute values, depending on
their current value.
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7. Imputation with mice()
7.6. Visit sequence

When the post-processed or passively imputed values of a variable depend
on other variables, the sequence in which the variables are imputed may be
important to obtain consistent values.

Example:
If BMI is passively imputed (calculated) before the new imputations for height
and weight are drawn, the resulting values of BMI, will match height and
weight from the previous iteration, but not the iteration given in the imputed
dataset.

In mice() the argument visitSequence specifies in which order the columns
of the data are imputed. By default mice() imputes in the order of the
columns in data.
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7. Imputation with mice()
7.6. Visit sequence

visitSeq <- imp2$visitSequence

visitSeq

## bili chol HDL hypten hypchol smoke alc

## 4 5 6 7 8 10 11

## educ SBP HyperMed creat albu uricacid WC

## 12 13 14 15 16 17 18

## height weight BMI

## 19 20 21

Currently, hypten is imputed before SBP, but the imputed values of hypten are
post-processed depending on the current value of SBP. To get consistent values
of these two variables, we need to change the visitSequence.
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7. Imputation with mice()
7.6. Visit sequence

visitSeq <- c(visitSeq[-which(names(visitSeq) == "hypten")],

visitSeq["hypten"])

visitSeq

## bili chol HDL hypchol smoke alc educ

## 4 5 6 8 10 11 12

## SBP HyperMed creat albu uricacid WC height

## 13 14 15 16 17 18 19

## weight BMI hypten

## 20 21 7

The visitSequence may specify that a column is visited multiple times during
one iteration. All incomplete variables must be visited at least once.

visitSequence can also be specified using one of the keywords "roman" (left
to right), "arabic" (right to left), "monotone" (sorted in increasing amount of
missingness), "revmonotone" (reverse of monotone)
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7. Imputation with mice()
7.7. Good to know

mice() performs some pre-processing and removes

incomplete variables that are not imputed but are specified as predictor,

constant variables, and

collinear variables.

In each iteration

linearly dependent variables are removed and

polr imputation models that do not converge are replaced by polyreg.

Why?
To avoid problems in the imputation models.
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7. Imputation with mice()
7.7. Good to know

As a consequence

imputation models may differ from what the user has specified or assumes
is happening, or

variables that should be imputed are not.

á Know your data

á Make sure method and predictorMatrix are specified appropriately

á Check the output and log of these automatic actions carefully
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7. Imputation with mice()
A note

“Please realize that these choices are always needed. Imputation soft-
ware needs to make default choices. These choices are intended to
be useful across a wide range of applications. However, the default
choices are not necessarily the best for the data at hand. There is
simply no magical setting that always works, so often some tailoring
is needed.” [17, p. 124]
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8. Convergence & Diagnostics
8.1. Logged events

The log of the automatic changes (slide 89) is returned as part of the mids

object:

head(imp2$loggedEvents)

## it im co dep meth out

## 1 1 1 10 smoke multinom

## 2 1 1 11 alc multinom

## 3 1 1 12 educ multinom

## 4 1 2 10 smoke multinom

## 5 1 2 11 alc multinom

## 6 1 2 12 educ multinom

With columns

it iteration number
im imputation number
co column number in the data
dep dependent variable
meth imputation method used
out names of altered or removed

predictors
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8. Convergence & Diagnostics
8.2. Convergence

Recall from slides 19 and 23:
mice uses an iterative algorithm and imputations from the first few iterations
may not be samples from the “correct” distributions.

Traceplots can be used to visually assess convergence.

In mice the function plot() produces traceplots of the mean and standard
deviation (across subjects) per incomplete variable (see slide 25).

93 / 225



8. Convergence & Diagnostics
8.2. Convergence

plot(imp2, layout = c(6, 3))
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8. Convergence & Diagnostics
8.2. Convergence

The traceplots show that the imputations for chol and hypchol have an
upward trend.

Strong trends and traces that show correlation between variables indicate
problems of feedback. This needs to be investigated and resolved in the
specification of the predictorMatrix.

Weak trends may be artefacts that often disappear when the imputation is
performed with more iterations.
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8. Convergence & Diagnostics
8.3. Diagnostics

When MCMC chains have converged, the distributions of the imputed and
observed values can be compared to investigate differences between observed
and imputed data.

Note:
Plots usually show the marginal distributions of observed and imputed values,
which do not have do be identical under MAR.

Recall:
The conditional distributions (given all the other variables in the imputation
model) of the imputed values are assumed to be the same as the conditional
distributions of the observed data.
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8. Convergence & Diagnostics
8.3. Diagnostics

mice provides several functions for visual diagnosis of imputed values:

densityplot() (for large datasets and variables with many NAs)

stripplot() (for smaller datasets and/or variables with few NAs)

bwplot()

xyplot()

These functions create lattice graphics, which can be modified analogous to
their parent functions from the lattice package.
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8. Convergence & Diagnostics
8.3. Diagnostics

densityplot(imp2)
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8. Convergence & Diagnostics
8.3. Diagnostics

The densityplot() shows that the distribution of imputed values of creat is
wider than the distribution of the observed values and that imputed values of
height are smaller than the observed values.

99 / 225



8. Convergence & Diagnostics
8.3. Diagnostics

In some cases differences in distributions can be explained by strata in the data,
however, here, gender does not explain the difference in observed and imputed
values.

densityplot(imp2, ~height|gender, plot.points = T)
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8. Convergence & Diagnostics
8.3. Diagnostics

As an alternative, we might consider race to explain the differences

densityplot(imp2, ~height|race)

## Error in density.default(x = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, :

need at least 2 points to select a bandwidth automatically

However, there are not enough missing values of height per categories of race
to estimate densities.

with(NHANES, table(race = race, "height missing" = is.na(height)))

## height missing

## race FALSE TRUE

## Mexican American 233 26

## Other Hispanic 252 16

## Non-Hispanic White 884 2

## Non-Hispanic Black 618 1

## other 451 0
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8. Convergence & Diagnostics
8.3. Diagnostics

In that case, a stripplot() may be better suited. Here we can also split the
data for gender and race.

stripplot(imp2, height ~ race|gender, pch = c(1, 20),

scales = list(x = list(rot = 45)))
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8. Convergence & Diagnostics
8.3. Diagnostics

Alternatively, observed and imputed data can be represented by
box-and-whisker plots:

bwplot(imp2, height + weight + bili + chol ~.imp)
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8. Convergence & Diagnostics
8.3. Diagnostics

The function xyplot() allows multivariate investigation of the imputed versus
observed values.

xyplot(imp2, height ~ chol|gender, pch = c(1,20))
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8. Convergence & Diagnostics
8.3. Diagnostics

All of the above graphs displayed only continuous imputed variables. For
categorical variables we can compare the proportion of values in each category.

mice does not provide a function to do this, but we can write one ourselves, as
for instance the function probplot(), for which the syntax can be found here.
The function can be loaded into R using:

devtools::source_gist("0d00375da460dd33839b98faeee2fdab",

filename = "probplot.R")
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8. Convergence & Diagnostics
8.3. Diagnostics

probplot(imp2, strip.text = element_text(size = 14))
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8. Convergence & Diagnostics
8.3. Diagnostics

smoke and educ have very few missing values (4 and 1, respectively), so we do
not need to worry about differences between observed and imputed data for
those variables.

For alc, missing values are imputed by the lower consumption categories more
often than we would expect from the observed data, hypten is less frequent and
hypchol a bit more frequent, in the imputed data compared to the observed.

If we expect that gender and race might explain the differences for alc, we
can include those factors into the plot.
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8. Convergence & Diagnostics
8.3. Diagnostics

probplot(imp2, formula = alc ~ race + gender)
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8. Convergence & Diagnostics
8.3. Diagnostics

Since hypertension is more common in older individuals, we may want to
investigate if age can explain the differences in imputed values of hypten.

round(sapply(split(NHANES[, "age"], addNA(NHANES$hypten)), summary), 1)

## no yes <NA>

## Min. 20.0 20.0 20.0

## 1st Qu. 28.0 47.0 30.0

## Median 38.0 59.0 38.5

## Mean 40.7 56.9 41.5

## 3rd Qu. 51.0 68.0 50.8

## Max. 79.0 79.0 78.0

The table shows that the distribution of age in participants with missing
hypten is very similar to the distribution of age in participants without hypten.
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8. Convergence & Diagnostics
8.3. Diagnostics

Plotting the proportions of observed and imputed hypten separately per
quartile of age:

probplot(imp2, formula = hypten ~ cut(age, quantile(age), include.lowest = T))
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9. Analyse & pool the imputed data
9.1. Analysing imputed data

Once we have confirmed that our imputation was successful, we can move on
to the analysis of the imputed data.

For example, we might be interested in the following logistic regression model:

glm(DM ~ age + gender + hypchol + BMI + smoke + alc,

family = "binomial")

To fit the model on each of the imputed datasets, we do not need to extract
the data from the mids object, but can use with().

mod1 <- with(imp2, glm(DM ~ age + gender + hypchol + BMI + smoke + alc,

family = "binomial"))

mod1 is an object of class mira.
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9. Analyse & pool the imputed data
9.2. Pooling results

Pooled results can be obtained using pool() and its summary.

options(width = 90)

res1 <- summary(pool(mod1))

round(res1, 3)

## est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda

## (Intercept) -7.133 0.429 -16.616 2240.573 0.000 -7.975 -6.291 NA 0.013 0.012

## age 0.056 0.004 12.952 2468.059 0.000 0.048 0.065 0 0.001 0.001

## gender2 -0.422 0.128 -3.304 1749.968 0.001 -0.673 -0.172 NA 0.026 0.025

## hypchol2 -0.064 0.188 -0.342 403.591 0.732 -0.434 0.305 NA 0.095 0.090

## BMI 0.106 0.009 11.576 2265.730 0.000 0.088 0.123 73 0.012 0.011

## smoke2 0.129 0.144 0.896 2432.312 0.370 -0.153 0.411 NA 0.005 0.004

## smoke3 0.080 0.166 0.479 1953.715 0.632 -0.246 0.405 NA 0.021 0.020

## alc2 -0.277 0.150 -1.845 475.882 0.066 -0.573 0.018 NA 0.085 0.082

## alc3 -0.570 0.220 -2.585 1192.205 0.010 -1.002 -0.137 NA 0.042 0.041

## alc4 -0.466 0.246 -1.894 154.639 0.060 -0.952 0.020 NA 0.165 0.155

## alc5 -0.741 0.220 -3.375 747.163 0.001 -1.172 -0.310 NA 0.063 0.060
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9. Analyse & pool the imputed data
9.2. Pooling results

Pooling with mice::pool() is available for most types of models.

Generally, it works for models for which the functions coef() and vcov() can
extract the (fixed effects) coefficients and variance-covariance matrix of
these coefficients.

An alternative is offered by the package mitools and the function
MIcombine().
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9. Analyse & pool the imputed data
9.3. Functions for pooled results

mice currently has two functions available for evaluating model fit / model
comparison

For linear regression models the pooled R2 can be calculated using
pool.r.squared()

mod2 <- with(imp2, lm(SBP ~ DM + age + hypten))

pool.r.squared(mod2, adjusted = TRUE)

## est lo 95 hi 95 fmi

## adj R^2 0.3243655 0.2940335 0.3547556 0.006885114

The argument adjusted specifies whether the adjusted R2 or the standard R2

is returned.
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9. Analyse & pool the imputed data
9.3. Functions for pooled results

The function pool.compare() allows to compare nested models (i.e., models
where one is a special case of the other, with some parameters fixed to zero)
using a Wald test.

Example: To test if smoke has a relevant contribution to the model for DM
from above we re-fit the model without smoke and compare the two models:

mod3 <- with(imp2, glm(DM ~ age + gender + hypchol + BMI + alc,

family = "binomial"))

# Wald test

pool.compare(mod1, mod3)$pvalue

## [,1]

## [1,] 0.6577086
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9. Analyse & pool the imputed data
9.3. Functions for pooled results

The package miceadds extends mice, for example with the following
functionality:

Combine χ2 or F statistics from multiply imputed data:

miceadds::micombine.chisquare(dk, df, ...)

miceadds::micombine.F(values, df1, ...)

These functions take vectors of statistics computed on each imputed dataset
and pool them.

Calculate correlation or covariance of imputed data:

miceadds::micombine.cor(mi.res, ...)

miceadds::micombine.cov(mi.res, ...)

These functions take mids objects as input.
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10. Additional functions in mice()
10.1. Extract & export imputed data

The function complete() allows extraction of the imputed data from a
mids object:

mice::complete(x, action = 1, include = FALSE)

x: the mids object

action:

1, . . . , m (single imputed dataset)
"long": long format (imputed data stacked vertically)
"broad": wide format (imputed data combined horizon-

tally; ordered by imputation)
"repeated": (like "broad", but ordered by variable)

include: include the orginal data?
(if action is "long", "broad" or "repeated")
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10. Additional functions in mice()
10.1. Extract & export imputed data

The function mids2spss() allows the export of imputed data (mids objects)
to SPSS.

mids2spss(imp2,

filedat = "datafile.txt", # the file containing the data

filesps = "importsyntax.sps", # syntax to get .sav from .txt

silent = TRUE

)

Data from mids objects can also be exported to MPLUS using mids2mplus().
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10. Additional functions in mice()
10.2. Combining mids objects

To increase the number of imputed datasets without re-doing the initial m
imputations, a second set of imputations can be done and the two mids objects
combined using ibind().

# same syntax as before, but different seed

imp2b <- update(imp2, post = post, maxit = 20, seed = 456)

imp2combi <- ibind(imp2, imp2b)

# check the new number of impute datasets:

imp2combi$m

## [1] 10
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10. Additional functions in mice()
10.3. Adding variables to mids objects

The function cbind.mids() allows to add columns to a mids object. The
extra columns can either be a data.frame, matrix, vector or factor or
another mids object.

For example data columns that should be part of the imputed data for
completeness, but are not needed in the imputation.

extravar <- rnorm(nrow(NHANES))

impextra <- mice:::cbind.mids(x = imp2, extravar = extravar)

Note: cbind() just adds columns to the data, you need to make sure they are
sorted correctly so that the rows of the new data are from the same subjects
as the corresponding rows in the impute data.
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11. Multiple Imputation in SPSS
11.1. Where to get help

A walk-through how to do multiple imputation in SPSS can be found

for older versions of SPSS
> Help
> Case Studies
>Missing Values Option
>Multiple Imputation
> Using Multiple Imputation to Complete and Analyze a Dataset

for newer versions online
https://www.ibm.com/support/knowledgecenter/en/SSLVMB_24.0.

0/spss/tutorials/mi_table.html

The procedure itself is located in the menu
> Analyze
> Multiple Imputation
> Impute Missing Data Values
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11. Multiple Imputation in SPSS
11.2. Multiple Imputation Features

SPSS lets you

specify number of imputations

specify number of iterations

include interactions

chose between lin. regression and
pmm for continuous variables

restrict variables to certain values

select which variables to impute

select which variables are used as
predictors

save the iteration history
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11. Multiple Imputation in SPSS
11.2. Multiple Imputation Features

SPSS does not let you

select between linear regression imputation and predictive mean matching
per variable (only jointly for all variables)

use more than one donor in predictive mean matching

use anything but logistic regression for categorical variables

chose per imputation model which variables should be used as predictors

re-calculate variables during the iterations

. . .
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11. Multiple Imputation in SPSS
11.2. Multiple Imputation Features

In SPSS the list of models that can be pooled is available in the help under
> Help
> Missing Values Option
>Multiple Imputation
> Analyzing Multiple Imputation Data

https://www.ibm.com/support/knowledgecenter/en/SSLVMB_24.0.0/

spss/mva/mi_analysis.html
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Practical

To practice all that we have seen above, go to

https://emcbiostatistics.shinyapps.io/MICourse_MICE

or download the instructions and data for the practical from Canvas
(Files > Principal documents > Multiple Imputation > Practical MICE).
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Part III

When MICE might fail
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Outline of Part III

12. Settings where MICE may have problems
12.1 Example: Quadratic effect
12.2 Example: Interaction effect
12.3 Example: Longitudinal outcome
12.4 Example: Survival data

13. Requirements for MICE to work (well)
13.1 Joint and conditional distributions
13.2 Some conditions and definitions
13.3 Why imputation with MICE can go wrong

14. Alternatives to MICE
14.1 Joint model imputation
14.2 Multivariate Normal Model
14.3 Sequential Factorization
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Outline of Part III (cont.)

15. Imputation with non-linear functional forms
15.1 R package mice
15.2 R package JointAI
15.3 R package smcfcs
15.4 R package jomo
15.5 Comparison of results

16. Imputation of longitudinal data
16.1 R package mice
16.2 R package JointAI
16.3 R package jomo
16.4 Comparison of results
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Outline of Part III (cont.)

17. Imputation of survival data
17.1 Results from literature
17.2 R package mice
17.3 R package smcfcs
17.4 R package jomo
17.5 Comparison of results
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12. Settings where MICE may have problems
12.1. Example: Quadratic effect

Consider the case where the analysis model (which we assume to be true) is

y = β0 + β1x + β2x
2 + . . . ,

i.e., y has a quadratic relationship with x , and x is incomplete.

x

y

observed
missing

The original data show a curved
pattern.
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12. Settings where MICE may have problems
12.1. Example: Quadratic effect

The model used to impute x when using MICE (naively) is

x = θ10 + θ11y + . . . ,

i.e., a linear relation between x and y is assumed.

x

y

observed
missing
imputed

The imputed values distort the
curved pattern of the original
data.

131 / 225



12. Settings where MICE may have problems
12.1. Example: Quadratic effect

The model fitted on the imputed data gives severely biased results; the
non-linear shape of the curve has almost completely disappeared.

x

y

fit on complete
fit on imputed

observed
missing
imputed

β 95% CI

Original
Intercept -0.99 [-1.04, -0.95]
x -0.61 [-0.66, -0.56]
x2 0.52 [0.43, 0.62]

Imputed
Intercept -0.73 [-0.79, -0.66]
x -0.53 [-0.62, -0.44]
x2 0.07 [-0.07, 0.22]
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12. Settings where MICE may have problems
12.2. Example: Interaction effect

Another example occurs when the analysis model (again, assumed to be true) is

y = β0 + βxx + βzz + βxzxz + . . . ,

i.e., y has a non-linear relationship with x due to the interaction term.

x

y

missing (z = 0)
missing (z = 1)
observed (z = 0)
observed (z = 1)

The original data shows a “<”
shaped pattern.
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12. Settings where MICE may have problems
12.2. Example: Interaction effect

The model used to impute x when using MICE (naively) is

x = θ10 + θ11y + θ12z + . . . ,

i.e., a linear relation between x and y is assumed.

x

y

missing (z = 0)
missing (z = 1)
observed (z = 0)
observed (z = 1)
imputed (z = 0)
imputed (z = 1)

The “<” shaped pattern of the
true data is distorted by the
imputed values.
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12. Settings where MICE may have problems
12.2. Example: Interaction effect

And the analysis on these naively imputed values leads to severely biased
estimates.

x

y

missing (z = 0)
missing (z = 1)
observed (z = 0)
observed (z = 1)
imputed (z = 0)
imputed (z = 1)

 true
 imputed

β 95% CI

Original
Intercept -0.96 [-1.00, -0.92]
x -0.59 [-0.65, -0.53]
z 0.5 [0.45, 0.56]
x:z 0.94 [0.85, 1.03]

Imputed
Intercept -0.96 [-1.01, -0.91]
x -0.52 [-0.61, -0.44]
z 0.46 [0.39, 0.54]
x:z 0.37 [0.24, 0.51]
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12. Settings where MICE may have problems
12.3. Example: Longitudinal outcome

Another setting where imputation with MICE is not straightforward is when the
outcome variable is longitudinal.

0.0 2.5 5.0 7.5

time

y

ID y x1 x2 x3 x4 time

5 X X NA X X 2.56
5 X X NA X X 4.57
5 X X NA X X 6.25
5 X X NA X X 8.09
6 X X NA NA X 2.60
6 X X NA NA X 4.69
6 X X NA NA X 6.82
8 X X X X NA 2.69
8 X X X X NA 6.01
8 X X X X NA 8.66

18 X X NA X X 0.75
18 X X NA X X 2.60
18 X X NA X X 6.62
18 X X NA X X 8.28
...

...
...

...
...

...
...

Here, x1, . . . , x4 are baseline covariates, i.e., not measured repeatedly.

136 / 225



12. Settings where MICE may have problems
12.3. Example: Longitudinal outcome

If we use MICE in the data in this (long) format, each row would be regarded
as independent, which may cause bias and inconsistent imputations.

Imputed values of baseline covariates
are imputed with different values,
creating data that could not have been
observed.

ID y x1 x2 x3 x4 time

5 X X boy X X 2.56
5 X X girl X X 4.57
5 X X girl X X 6.25
5 X X girl X X 8.09
6 X X girl high X 2.60
6 X X boy mid X 4.69
6 X X girl high X 6.82
8 X X X X 38.27 2.69
8 X X X X 38.45 6.01
8 X X X X 40.71 8.66

18 X X boy X X 0.75
18 X X boy X X 2.60
18 X X boy X X 6.62
18 X X boy X X 8.28
...

...
...

...
...

...
...
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12. Settings where MICE may have problems
12.3. Example: Longitudinal outcome

x3 (low) x3 (mid) x4

Intercept x1 x2

original imputed original imputed original imputed

original imputed original imputed original imputed

−0.75

−0.50

−0.25
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Estimates can be
severely biased.
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12. Settings where MICE may have problems
12.3. Example: Longitudinal outcome

In some settings imputation in wide format may be possible.

0.0 2.5 5.0 7.5

time

y

ID y x1 x2 x3 x4 time

5 X X NA X X 2.56
5 X X NA X X 4.57
5 X X NA X X 6.25
5 X X NA X X 8.09
6 X X NA NA X 2.60
6 X X NA NA X 4.69
6 X X NA NA X 6.82
8 X X X X NA 2.69
8 X X X X NA 6.01
8 X X X X NA 8.66

18 X X NA X X 0.75
18 X X NA X X 2.60
18 X X NA X X 6.62
18 X X NA X X 8.28
...

...
...

...
...

...
...
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time

y
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12. Settings where MICE may have problems
12.3. Example: Longitudinal outcome

id y.1 y.3 y.5 y.7 y.9 time.1 time.3 time.5 time.7 time.9 . . .

5 NA 35.19 34.94 34.81 35.56 NA 2.56 4.57 6.25 8.09 . . .
6 NA 33.74 33.94 34.09 NA NA 2.6 4.69 6.82 NA . . .
8 NA 34.82 NA 35.18 36.13 NA 2.69 NA 6.01 8.66 . . .
18 35.71 35.82 NA 36.28 36.73 0.75 2.6 NA 6.62 8.28 . . .
...

...
...

...
...

...
...

...
...

...
...

. . .

In this wide format data frame, missing values in outcome and measurement
times need to be imputed (to be able to use them as predictors to impute
covariates), even though we would not need to impute them for the analysis
(mixed model valid when outcome measurements are M(C)AR).
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12. Settings where MICE may have problems
12.3. Example: Longitudinal outcome

x3 (low) x3 (mid) x4

Intercept x1 x2

orig. imp.
long

imp.
wide

orig. imp.
long

imp.
wide

orig. imp.
long

imp.
wide

orig. imp.
long

imp.
wide

orig. imp.
long
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wide

orig. imp.
long
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wide
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Better, but very large
confidence intervals.
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12. Settings where MICE may have problems
12.3. Example: Longitudinal outcome

time

y

When the data is very
unbalanced, i.e., there
are no clear cut-offs in
time, transformation to
wide format is not
possible.

(Or at least
transformation to wide
format leads to
variables with high
proportions of missing
values.)
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12. Settings where MICE may have problems
12.3. Example: Longitudinal outcome

time

y

time

y

Naive approaches that are
sometimes used are to

ignore the outcome in
the imputation

, or to

use only the first/baseline
outcome

However, important
information may be lost,
resulting in invalid imputations
and biased results.
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12. Settings where MICE may have problems
12.4. Example: Survival data

In survival analysis, the aim is to estimate the effect of covariates on the time
until an event of interest happens.

In the commonly used method: Cox proportional hazards model

h(t) = h0(t) exp(xβx + zβz),

h(t): hazard = the instantaneous risk of an event at time t, given that the
event has not occurred until time t

h0(t): unspecified baseline hazard

x and z : incomplete and complete covariates, respectively

Survival outcomes are usually represented by the observed event time T
and the event indicator D (D = 1: event, D = 0: censored).
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12. Settings where MICE may have problems
12.4. Example: Survival data

Naive use of MICE treats the columns in the data set containing T and D
just like any other variable, and the resulting imputation model for X would
have the form

p(x | T ,D, z) = θ0 + θ1T + θ2D + θ3z + . . . .

The correct conditional distribution of x given the other variables is, however,

log p(x | T ,D, z) = log p(x | z) + D(βxx + βzz)−
H0(T ) exp(βxx + βzz) + const.,

where H0(T ) is the cumulative baseline hazard.[20]
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12. Settings where MICE may have problems
12.4. Example: Survival data

Using the naively assumed imputation model can lead to severe bias:

x1 (continuous) x2 (binary) x3 (continuous)

original naive
imputation

original naive
imputation

original naive
imputation

0.0
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(Results from MICE imputation with two incomplete normal and one
incomplete binary covariate.)
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13. Requirements for MICE to work (well)
13.1. Joint and conditional distributions

Recall: The MICE algorithm is based on the idea of Gibbs sampling.

Gibbs sampling exploits the fact that a joint distribution is fully determined by
its full conditional distributions.

joint
distribution

Gibbs

MICE

full
conditionals

In MICE, the full conditionals are not derived from the joint distribution:
we directly specify the full conditionals and hope a joint distribution exists.
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13. Requirements for MICE to work (well)
13.1. Joint and conditional distributions

The uncertainty about whether a joint distribution exists for the specified
set of imputation models is often considered to be mainly a theoretical problem.

In practice, violations only have little impact on results in many applications.

However, as we have seen in the examples on the previous slides, there are
settings where the direct specification of the full conditionals/imputation
models may lead to problems, causing biased results.
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13. Requirements for MICE to work (well)
13.2. Some conditions and definitions

Two important definitions:

Compatibility:

A joint distribution exists, that has the full conditionals (imputation
models) as its conditional distributions.

Congeniality:

The imputation model is compatible with the analysis model.
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13. Requirements for MICE to work (well)
13.2. Some conditions and definitions

Important requirements for MICE to work well include:

Compatibility

Congeniality

MAR or MCAR (in the standard implementations)

all relevant variables need to be included (omission might result in
MNAR)

The outcome needs to be included as predictor variable
(but we usually do not impute missing outcome values)

the imputation models (and analysis model) need to be correctly
specified (which is a requirement in any standard analysis)
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13. Requirements for MICE to work (well)
13.3. Why imputation with MICE can go wrong

What went wrong in our previous examples?

When incomplete variables have non-linear associations with the outcome, or
with each other, the requirement(s) of compatibility and/or congeniality are
violated.

Omission, or inadequate inclusion, of the outcome may result in MNAR
missing mechanisms. The same is the case when other relevant predictor
variables are not used as predictor variables in the imputation.

Furthermore, omission of variables may lead to mis-specified models,
however, models may also be mis-specified when all relevant covariates are
included, but distributional assumptions or the specified form of
associations are incorrect.
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14. Alternatives to MICE
14.1. Joint model imputation

To avoid incompatible and uncongenial imputation models, we need to

specify the joint distribution

and derive full conditionals / imputation models from this joint distribution

instead of specifying them directly.

Problem:
Especially in settings with several variables of mixed type, the joint
distribution is usually not of any known form:

x1 ∼ N(µ1, σ
2
1)

x2 ∼ N(µ2, σ
2
2)

⇒
(

x1

x2

)
∼ N

([
µ1

µ2

]
,

[
σ2

1 σ12

σ12 σ2
2

])

but
x1 ∼ N(µ1, σ

2
1)

x2 ∼ Bin(µ2)
⇒

(
x1

x2

)
∼???
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14. Alternatives to MICE
14.1. Joint model imputation

Approach 1: Multivariate Normal Model
Approximate the joint distribution by a known multivariate distribution (usually
the normal distribution; this is the approach mentioned in Part I on slide 15)

Approach 2: Sequential Factorization
Factorize the joint distribution into a (sequence of) conditional and a marginal
distributions
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14. Alternatives to MICE
14.2. Multivariate Normal Model

Assumption:
The outcome and incomplete variables follow a joint multivariate normal
distribution, conditional on the completely observed covariates Xc , parameters
θ and, possibly, random effects, b:

p(y , x1, . . . , xp | Xc ,θ,b) ∼ N(µ,Σ)

How do we get that multivariate normal distribution?

1. Assume all incomplete variables and the outcome are (latent) normal.

2. Specify linear (mixed) models based on observed covariates.

3. Connect using multivariate normal for random effects & error terms.
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14. Alternatives to MICE
14.2. Multivariate Normal Model

1. Latent normal assumption:

e.g.: xk binary → latent x̂k is standard normal:

{
xk = 1
xk = 0

if
x̂k ≥ 0
x̂k < 0
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14. Alternatives to MICE
14.2. Multivariate Normal Model

2. Specify models:

y =X cβy + Zy by + εy

w =X cβw + Zw bw + εw

x̂1 =X cβx1
+ εx1...

...

x̂p =X cβxp + εxp

�



�
	

�

�

�


- multivariate normal

- multivariate normal (optional, but suggested)
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14. Alternatives to MICE
14.2. Multivariate Normal Model

Advantages:

Easy to specify

Relatively easy to implement

Relatively easy to sample from

Works for longitudinal outcomes

Disadvantages:

Assumes linear associations

Imputation with non-linear associations or sur-
vival data is possible with extensions of the
multivariate normal approach.
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14. Alternatives to MICE
14.3. Sequential Factorization

The joint distribution of two variables y and x can be written as the product
of a conditional and a marginal distribution:

p(y , x) = p(y | x) p(x)

(or alternatively p(y , x) = p(x | y) p(y))

This can easily be extended for more variables:

p(y , x1, . . . , xp,Xc) = p(y | x1, . . . , xp,Xc)︸ ︷︷ ︸
analysis model

p(x1 | x2, . . . , xp,Xc) . . . p(xp | Xc)

where x1, . . . , xp denote incomplete covariates and Xc contains all completely
observed covariates.
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14. Alternatives to MICE
14.3. Sequential Factorization

That the analysis model is part of the specification of the joint distribution has
several advantages:

The outcome is automatically included in the imputation procedure.

The outcome does not appear in any of the predictors of the imputation
models:

no need to approximate complex outcomes,
no need to summarize complex outcomes.

The parameters of interest are obtained directly
á imputation and analysis in one step

Non-linear associations or interactions involving incomplete covariates
are specified in the analysis model and thereby automatically taken into
account

Since the joint distribution usually does not have a known form, Gibbs sampling
is used to estimate parameters and sample imputed values.
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14. Alternatives to MICE
14.3. Sequential Factorization

Advantages:

flexible with regards to outcome type

univariate conditional distributions of
incomplete covariates can be chosen
according to type of variable

non-linear associations and
interactions can be taken into account

assures congeniality and compatible
imputation models

Disadvantages:

separate models need to be
specified per incomplete
variable: takes more time
and consideration

the joint distribution is of
unknown form and sampling
may be more computationally
intensive
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15. Imputation with non-linear functional forms

In the following we will not only consider the R package mice, but also three
additional packages, JointAI, smcfcs and jomo, that provide alternatives to
mice.

These three packages use Bayesian methodology to impute values, but once
imputed datasets are obtained, standard complete data methods can be used.

jomo and smcfcs perform multiple imputation and create imputed datasets
that can then be analysed the same way data imputed by mice would be
analysed.

JointAI works fully Bayesian and performs the analysis and imputation
simultaneously, so that the results from the analysis model of interest are
obtained directly.
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15. Imputation with non-linear functional forms
15.1. R package mice

There is no strategy for MICE that can guarantee valid imputations when
non-linear functional forms and/or interactions are involved, but some settings
in mice may help to reduce bias in the resulting estimates.

For imputation of variables that have non-linear associations

pmm often works better than norm,

Just Another Variable approach can reduce bias in interactions,

quadratic can help to impute variables with quadratic association.
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15. Imputation with non-linear functional forms
15.1. R package mice

In the Just Another Variable (JAV) approach the non-linear form (or
interaction term) is calculated in the incomplete data, added as a column to the
dataset and imputed as if it was just another variable.

quadratic provides imputation of covariates that have a quadratic association
with the outcome, using the “polynomial combination” method.[17, pp.
139–141], [19].

This is to ensure the imputed values for x and x2 are consistent, and to reduce
bias in the subsequent analysis that uses x and x2.

In my experience, using quadratic can lead to numerical problems.
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15. Imputation with non-linear functional forms
15.1. R package mice

To demonstrate the approaches, we use a simulated example dataset DFnonlin,
with

continuous outcome y

continuous (normal) covariate x (50% missing values MCAR)

quadratic effect of x on y

binary covariate z (complete)

interaction between x and z

In the naive approach, we leave all settings to the defaults.

# naive imputation, using only y, x, z

impnaive <- mice(DF_nonlin, printFlag = F)
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15. Imputation with non-linear functional forms
15.1. R package mice

We use two different JAV approaches:

JAV: calculating the quadratic and interaction term before imputation

# add quadratic term and interaction to data

DF2 <- DF_nonlin

DF2$xx <- DF2$x^2

DF2$xz <- DF2$x * DF2$z

# JAV imputation

impJAV <- mice(DF2, printFlag = F, maxit = 20)

JAV2: additionally using an interaction between z and y

# add interaction between y and z to data

DF3 <- DF2

DF3$yz <- DF3$y * DF3$z

# JAV imputation with additional interaction

impJAV2 <- mice(DF3, printFlag = F, maxit = 20)
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15. Imputation with non-linear functional forms
15.1. R package mice

We also try using imputation method quadratic.

# adapt the imputation method for quadratic imputation

methqdr <- impJAV$meth

methqdr[c("x", "xx", "xz")] <- c("quadratic", "~I(x^2)", "~I(x*z)")

# adapt the predictor matrix

predqdr <- impJAV$pred

predqdr[, "xx"] <- 0

impqdr <- mice(DF2, meth = methqdr, pred = predqdr,

printFlag = F, maxit = 10)

Note: there were warning messages about numerical issues for this approach.
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15. Imputation with non-linear functional forms
15.1. R package mice

x:z z

(Intercept) I(x^2) x
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For this example, none of the approaches provided satisfying results.
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15. Imputation with non-linear functional forms
15.2. R package JointAI

The package JointAI uses the sequential factorization approach to perform
simultaneous analysis and imputation.[4, 3]

JointAI (version 0.1.0) can handle

linear regression

generalized linear regression

linear mixed models

while assuring compatibility between analysis model and imputation models
when non-linear functions or interactions are included.

The necessary Gibbs sampling is performed using JAGS (an external program),
which is free, but needs to be installed from
https://sourceforge.net/projects/mcmc-jags/files/.
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15. Imputation with non-linear functional forms
15.2. R package JointAI

JointAI can be installed from CRAN

install.packages("JointAI")

The development version (containing bug fixes and other improvements) can be
installed from GitHub

install.packages("devtools")

devtools::install_github("NErler/JointAI")

A detailed explanation of the functionality is given in the help files of the
package, and a vignette with an in-depth example analysis will be available
soon.
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15. Imputation with non-linear functional forms
15.2. R package JointAI

The syntax we use to analyse and impute the current example using JointAI is
similar to the specification of a standard linear model using lm().

library(JointAI)

JointAI_nonlin <- lm_imp(y ~ x*z + I(x^2), data = DF_nonlin,

n.iter = 2500)

Convergence of the Gibbs sampler can be checked using a traceplot.

traceplot(JointAI_nonlin)

Results (no separate analysis & pooling is necessary) can be obtained with the
summary() function:

res_JointAI_nonlin <- summary(JointAI_nonlin)
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15. Imputation with non-linear functional forms
15.3. R package smcfcs

The package smcfcs performs multiple imputation using substantive model
compatible fully conditional specification, a hybrid approach between FCS
and sequential factorization.[1]

smcfcs (version 1.3.0) can handle

linear regression,

logistic regression,

poisson regression,

Cox proportional hazard models, and

competing risk survival models,

while ensuring compatibility between analysis model and imputation models.

For more information see the help files and the vignette.
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15. Imputation with non-linear functional forms
15.3. R package smcfcs

The syntax to impute the data in the current example using the package
smcfcs is:

library(smcfcs)

smcfcs_nonlin <- smcfcs(originaldata = DF_nonlin, smtype = "lm",

smformula = "y~x*z + I(x^2)",

method = c("", "norm", ""),

rjlimit = 3000, numit = 20)

The convergence of the procedure should be checked, for example with the
following syntax:

par(mfrow = c(2,3), mar = c(2, 2, 0.5, 0.5), mgp = c(2, 0.6, 0))

for(i in 1:dim(smcfcs_nonlin$smCoefIter)[2]) {
matplot(t(smcfcs_nonlin$smCoefIter[, i, ]), type = 'l', ylab = '')

}
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15. Imputation with non-linear functional forms
15.3. R package smcfcs

To be able to use the convenient pooling function from the mice package we
first need to convert the imputed data (which is a list) to a mids object.

This can be done with the function datalist2mids() from the miceadds
package.

library(miceadds)

impobj_smcfcs_nonlin <- datalist2mids(smcfcs_nonlin$impDatasets)

The mids object can then be pooled and summarized as we have seen before
with mids objects created by mice().

models_smcfcs_nonlin <- with(impobj_smcfcs_nonlin, lm(y ~ x*z + I(x^2)))

res_smcfcs_nonlin <- summary(pool(models_smcfcs_nonlin))
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15. Imputation with non-linear functional forms
15.4. R package jomo

The package jomo performs joint model imputation using the multivariate
normal approach, with extensions to assure compatibility between analysis
and imputation models.[2]

jomo (version 2.6-2) can handle

linear regression,

generalized linear regression,

linear mixed models,

generalized linear mixed models, and

Cox proportional hazards models.
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15. Imputation with non-linear functional forms
15.4. R package jomo

Using jomo we can impute the data in the current example as follows:

library(jomo)

jomo_nonlin <- jomo.lm(y ~ x*z + I(x^2), data = DF_nonlin)

To check the convergence of the model, the corresponding function with ending
.MCMCchain() has to be used.

jomo_nonlinMCMC <- jomo.lm.MCMCchain(y ~ x*z + I(x^2), data = DF_nonlin)

par(mfcol = c(2, 3), mar = c(3, 2.5, 0.5, 0.5), mgp = c(2, 0.6, 0))

apply(jomo_nonlinMCMC$collectbeta[1, ,], 1, plot, type = "l",

xlab = 'iteration', ylab = '')

for (k in 1:dim(jomo_nonlinMCMC$collectomega)[1]) {
apply(jomo_nonlinMCMC$collectomega[k, , ], 1, plot, type = "l",

xlab = 'iteration', ylab = '')

}

apply(jomo_nonlinMCMC$collectbetaY[1, ,], 1, plot, type = "l",

xlab = 'iteration', ylab = '')

plot(jomo_nonlinMCMC$collectvarY, type = 'l')
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15. Imputation with non-linear functional forms
15.4. R package jomo

Again, we need to convert the output to a mids object using
datalist2mids(). However, jomo.lm() returns a data frame, in which the
original data and all imputed datasets are stacked onto each other.

split() splits the dataset by imputation number into a list of datasets, from
which we need to exclude the first element (the original/incomplete data).

impobj_jomo_nonlin <- datalist2mids(split(jomo_nonlin,

jomo_nonlin$Imputation)[-1])

With the resulting mids object, analysis of the imputed data and pooling of the
results works as in the above examples.

models_jomo_nonlin <- with(impobj_jomo_nonlin, lm(y ~ x*z + I(x^2)))

res_jomo_nonlin <- summary(pool(models_jomo_nonlin))
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15. Imputation with non-linear functional forms
15.5. Comparison of results
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Practical

To practice imputation with non-linear forms or interaction terms, go to

https://emcbiostatistics.shinyapps.io/MICourse_MIadvanced

or download the instructions and data for the practical from Canvas
(Files > Principal documents > Multiple Imputation > Practical MIadvanced).
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16. Imputation of longitudinal data
16.1. R package mice

mice has functions to allow imputation of longitudinal (2-level) data.

Level 1:
repeated measurements (within subjects) or subjects (within classes)

Level 2:
time-constant/baseline covariates, between subjects effects, variables on
the group level

Imputation methods for level-1
variables:

2l.pan

2l.norm

2l.lmer

Imputation methods for level-2
variables:

2lonly.norm

2lonly.pmm

2lonly.mean
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16. Imputation of longitudinal data
16.1. R package mice

2l.pan uses a linear two-level model with homogeneous within group
variances using Gibbs sampling [14]. It needs the package pan to be installed.

2l.pan allows for different roles of predictor variables, that can be specified as
different values in the predictorMatrix:

grouping/ID variable: -2

random effects (also included as fixed effects): 2

fixed effects of group means: 3

fixed effects of group means & random effects: 4

# random effects of x in model for y

pred["y","x"] <- 2

# fixed effects of x and group mean of x

pred["y","x"] <- 3

# random effects of x and group mean of x

pred["y","x"] <- 4
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16. Imputation of longitudinal data
16.1. R package mice

2l.norm implements a (Bayesian) linear two-level model with heterogenous
group variances.
In the current implementation all predictors should be specified as random
effects (set to 2 in the predictorMatrix, because the algorithm does not
handle predictors that are specified as fixed effects).

2l.lmer imputes univariate systematically and sporadically missing data using
a two-level normal model using lmer() from package lme4 (developed in the
context of individual patient meta analysis. [7, 6])

2lonly.norm and 2lonly.pmm can be used to impute level-2 variables (in
combination with 2l.pan for level-1 variables).

In all case, the group identifier (”id” variable”) needs to be set to -2 in the
predictorMatrix.
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combination with 2l.pan for level-1 variables).

In all case, the group identifier (”id” variable”) needs to be set to -2 in the
predictorMatrix.
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16. Imputation of longitudinal data
16.1. R package mice

2lonly.mean imputes values with the mean of the observed values per class.
This method should only be used to fill in values that are known to be constant
per class and have some values observed in each class.

Example: In a multi-center trial the type of some medical equipment is known
to be the same for all patients treated in the same hospital, but not filled in for
some patients.
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16. Imputation of longitudinal data
16.1. R package mice

As an example, we will impute the second (unbalanced) longitudinal data
example from above. The data contain

x1 (complete)

x2 (binary, 30% missing values)

x3 (3 categories, 30% missing values)

x4 (continuous/normal, 30% missing values)

y (longitudinal outcome)

time (time variable with quadratic effect)

id (id variable)

Since there is no 2-level method for categorical data, we use 2lonly.pmm to
impute x2 and x3.
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16. Imputation of longitudinal data
16.1. R package mice

As usual, we start with the setup run of mice()

imp0 <- mice(DFexlong2, maxit = 0)

meth <- imp0$method

pred <- imp0$predictorMatrix

and adjust the imputation method and predictorMatrix

meth[c("x2", "x3")] <- "2lonly.pmm"

meth[c("x4")] <- "2lonly.norm"

pred[, "id"] <- -2 # identify id variable

pred[, "ti"] <- 0 # don't use time-point indicator

We can then perform the imputation.

imp <- mice(DFexlong2, maxit = 10, method = meth,

predictorMatrix = pred, printFlag = F)
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16. Imputation of longitudinal data
16.1. R package mice

The imputed data can be analysed using either lmer() from the package lme4,
or lme() from nlme. Here we use the former.

library(lme4)

models <- with(imp, lmer(y ~ x1 + x2 + x3 + x4 + time + I(time^2) +

(time|id)))

mice_longimp <- summary(pool(models))
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16. Imputation of longitudinal data
16.1. R package mice

Currently, there is only limited documentation and examples available that show
how to use these functions in mice.
Technical details can be obtained from the methodological references given in
the help files of the R functions.

A vignette on multi-level imputation with mice is available. It gives a more
elaborate example of how to analyse such data.
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16. Imputation of longitudinal data
16.2. R package JointAI

Linear mixed models with incomplete covariates can also be analysed using the
package JointAI.

The syntax is analogous the syntax used in lme() of the package nlme.

library(JointAI)

JointAI_long <- lme_imp(y ~ x1 + x3 + x2 + x4 + time + I(time^2),

random = ~time|id, data = DFexlong2,

n.iter = 5000)

Again, convergence of the Gibbs sampler should be checked using a traceplot,

traceplot(JointAI_long)

before obtaining the results:

res_JointAI_long <- summary(JointAI_long)

Contrary to the two-level imputation of mice, non-linear associations are
appropriately handled.
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16. Imputation of longitudinal data
16.3. R package jomo

In jomo, the functions jomo.lmer() and jomo.glmer() can be used to
impute longitudinal data with normal or non-normal outcomes.

In the multi-level setting, the level of each variable needs to be specified (1:
repeated measurements, 2: baseline covariates), and ordered the same way
the variables occur in the data frame.

library(jomo)

# specify the level of each variable

lvl <- c("id" = 1, y = 1, x1 = 2, x2 = 2, x3 = 2, x4 = 2, time = 1)

jomo_long <- jomo.lmer(formula = y ~ x1 + x2 + x3 + x4 +

time + I(time^2) + (1 + time|id),

data = DFexlong2[, names(lvl)], level = lvl)

Like in the example with non-linear effects, convergence of the imputation
needs to be checked.
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16. Imputation of longitudinal data
16.3. R package jomo

Again, the stacked dataframe returned by jomo.lmer() needs to be split by
imputation number and the original data excluded, before fitting the model and
pooling the results.

library(miceadds)

impobj_jomo_long <- datalist2mids(split(jomo_long,

jomo_long$Imputation)[-1])

models_jomo_long <- with(impobj_jomo_long,

lmer(y ~ x1 + x3 + x2 + x4 + time + I(time^2) +

(time|clus)))

res_jomo_long <- summary(pool(models_jomo_long))

(Note: jomo.lmer() re-names the grouping variable to clus).

As in the examples for non-linear functional forms, congeniality of imputation
models is maintained.

189 / 225



16. Imputation of longitudinal data
16.4. Comparison of results
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16. Imputation of longitudinal data
16.4. Comparison of results
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Practical

To practice imputation with longitudinal data, continue with the practical at

https://emcbiostatistics.shinyapps.io/MICourse_MIadvanced

or the offline version that can be downloaded from Canvas
(Files > Principal documents > Multiple Imputation > Practical MIadvanced).
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17. Imputation of survival data
17.1. Results from literature

On slide 145 we have seen the rather complex formula for imputation of an
incomplete covariate in survival data.

White et al. [20] derived versions of this model for different settings (binary or
continuous incomplete covariate X , and continuous, categorical or no complete
covariate Z ) and investigated how to best approximate it.

They found that when covariate effects and cumulative incidences are
rather small, using Z , D and H0(T ), and possibly an interaction term, as
predictor variables in the imputation for X in MICE may work satisfactorily.

However, in practice H0(T ) is unspecified.
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17. Imputation of survival data
17.1. Results from literature

Two main ideas:

If covariate effects βx and βz are small, H0(t) ≈ H(t), which can be
approximated by the Nelson-Aalen estimator.

Estimate H0(T ) in an additional step inside the MICE procedure by
fitting a Cox model on the imputed data.

Neither of these approaches takes into account uncertainty about H0(t) (but
the impact is likely to be small).

Based on results from their simulation study, White et al. conclude that using
Z , D and the Nelson-Aalen estimator Ĥ(T ) as predictors for the imputation
of X worked best.

However, some bias towards the null should be expected when covariates have
large effects.
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17. Imputation of survival data
17.2. R package mice

In mice, nelsonaalen() can be used to calculate the Nelson-Aalen
estimator, to use it as covariate in the imputation.

survdat$H0 <- nelsonaalen(survdat, timevar = Time, statusvar = event)

Then, we can prepare the imputation using the same steps as in previous
examples:

# setup run

imp0 <- mice(survdat, maxit = 0)

meth <- imp0$method

pred <- imp0$predictorMatrix

# specify normal imputation for continuous covariates

meth[c("x1", "x3")] <- "norm"

# remove event time from predictor (high correlation with H0)

pred[, "Time"] <- 0
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17. Imputation of survival data
17.2. R package mice

With the modified arguments method and predictorMatrix we run the
imputation:

survimp <- mice(survdat, maxit = 10, method = meth,

predictorMatrix = pred, printFlag = F)

To obtain the pooled results, we first fit the model of interest

cox_mice <- with(survimp, coxph(Surv(Time, event) ~ x1 + x2 + x3))

and pool and summarize the results.

res_mice_surv <- summary(pool(cox_mice))

## Warning in mice.df(m, lambda, dfcom, method): Large sample

assumed.

The warning message refers to the way the degrees of freedom for the formulas
we saw in Part I (slide 32) are calculated and can be ignored.
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17. Imputation of survival data
17.3. R package smcfcs

Using the package smcfcs, the same data can be imputed with the following
syntax:

library(smcfcs)

smcfcs_surv <- smcfcs(originaldata = survdat, smtype = "coxph",

smformula = "Surv(Time, event) ~ x1 + x2 + x3",

method = c("", "", "logreg", "norm", "norm", ""),

numit = 20, rjlimit = 1500)

Convergence of the procedure should be checked, analogously to the previous
example (see slide 172).

After the resulting object is converted to a mids object, fitting the model and
pooling the results is identical to what was done with the data imputed by mice.

impobj_smcfcs_surv <- datalist2mids(smcfcs_surv$impDatasets)

models_smcfcs_surv <- with(impobj_smcfcs_surv,

coxph(Surv(Time, event) ~ x1 + x2 + x3))

res_smcfcs_surv <- summary(pool(models_smcfcs_surv))
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17. Imputation of survival data
17.4. R package jomo

In the package jomo, the function jomo.coxph() can be used to impute our
example survival data:

library(jomo)

jomo_surv <- jomo.coxph(formula = Surv(Time, event) ~ x1 + x2 + x3,

data = survdat)

Note that the convergence of the procedure should be checked using
jomo.coxph.MCMCchain() (see the previous examples using jomo).

To analyse & pool the imputed data the steps are identical to the other
examples:

impobj_jomo_surv <- datalist2mids(split(jomo_surv,

jomo_surv$Imputation)[-1])

models_jomo_surv <- with(impobj_jomo_surv,

coxph(Surv(Time, event) ~ x1 + x2 + x3))

res_jomo_surv <- summary(pool(models_jomo_surv))
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17. Imputation of survival data
17.5. Comparison of results
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The naive mice approach, and mice using the Nelson-Aalen estimator give very
biased results for the effects of x1 and x2, but performed acceptably well for x3.

Note that the true effects (log HR) of x1 and x2 are very large (-2 and 2.5,
respectively), and represent the setting where the approximation by the
Nelson-Aalen estimate is expected to be biased.
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Practical

To practice imputation with survival data, continue with the practical at

https://emcbiostatistics.shinyapps.io/MICourse_MIadvanced

or the offline version that can be downloaded from Canvas
(Files > Principal documents > Multiple Imputation > Practical MIadvanced).
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Summary & Conclusion of Part III

MICE requires congenial & compatible imputation models to work well.

When this is not the case, (naive) use of MICE can lead to biased results.

Common settings that require special attention are

non-linear functional forms & interaction terms

longitudinal data

survival data
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Summary & Conclusion of Part III (cont.)

When using the package mice, there are choices that can reduce bias

pmm tends to be less biased than norm for interactions or non-linear
associations
JAV approach reduces bias in settings with interactions or non-linear
associations
special 2-level imputation methods are available for longitudinal data
The Nelson-Aalen estimator can be used instead of the time variable for
imputing survival data when effects are not too large.

Generally, problems are more severe when

proportions of missing values are large,
effect sizes are large,
little other covariate information is available.

(Note that in the examples we had all of the above.)
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Summary & Conclusion of Part III (cont.)

In settings where MICE may not provide valid imputations, alternative
approaches are available and should be considered.

R packages that provide such alternative approaches are for example:

JointAI (non-linear & longitudinal)
smcfcs (non-linear & survival)
jomo (non-linear, longitudinal & survival)

These packages are very young.

Hence, they may still have some problems.
á Use them carefully! (and email the maintainer about problems)
They are under active development, so resolutions of bugs and features are
frequently added.
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Part IV

Multiple Imputation Strategies
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Outline of Part IV

18. Strategies for using MICE
18.1 Imputation methods
18.2 Tips & Tricks
18.3 Number of imputed datasets
18.4 What to do with large datasets?
18.5 How much missing is too much?
18.6 Imputation of outcomes
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19. MICE and MI in the bigger picture
19.1 Other R packages that do imputation
19.2 Imputation in other software
19.3 Other approaches to handle missing values
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18. Strategies for using MICE
18.1. Imputation methods

We have focussed on a few imputation methods that cover the most common
types of data but there are many more methods implemented.

Imputation methods implemented in the mice package:

mice.impute.2l.lmer mice.impute.logreg mice.impute.passive
mice.impute.2l.norm mice.impute.logreg.boot mice.impute.pmm
mice.impute.2l.pan mice.impute.mean mice.impute.polr
mice.impute.2lonly.mean mice.impute.midastouch mice.impute.polyreg
mice.impute.2lonly.norm mice.impute.norm mice.impute.quadratic
mice.impute.2lonly.pmm mice.impute.norm.boot mice.impute.rf
mice.impute.cart mice.impute.norm.nob mice.impute.ri
mice.impute.lda mice.impute.norm.predict mice.impute.sample

Note: Just because a method is implemented does not mean you
need to / should use it.
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18. Strategies for using MICE
18.1. Imputation methods

Imputation methods implemented in the miceadds package:

mice.impute.2l.binary mice.impute.bygroup
mice.impute.2l.contextual.norm mice.impute.eap
mice.impute.2l.contextual.pmm mice.impute.grouped
mice.impute.2l.continuous mice.impute.hotDeck
mice.impute.2l.eap mice.impute.ml.lmer
mice.impute.2l.groupmean mice.impute.plausible.values
mice.impute.2l.groupmean.elim mice.impute.pls
mice.impute.2l.latentgroupmean.mcmc mice.impute.pmm3
mice.impute.2l.latentgroupmean.ml mice.impute.pmm4
mice.impute.2l.plausible.values mice.impute.pmm5
mice.impute.2l.pls mice.impute.pmm6
mice.impute.2l.pls2 mice.impute.tricube.pmm
mice.impute.2l.pmm mice.impute.tricube.pmm2
mice.impute.2lonly.function mice.impute.weighted.norm
mice.impute.2lonly.norm2 mice.impute.weighted.pmm
mice.impute.2lonly.pmm2
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18. Strategies for using MICE
18.2. Tips & Tricks

In complex settings, variables may need to be re-calculated or re-coded after
imputation:

Use complete() to convert the imputed data from a mids object to a
data.frame.

Perform the necessary calculations.

Convert the changed data.frame back to a mids object using the
functions from the flow-diagram in the second practical (e.g., as.mids(),
datalist2mids(), imputationList(), . . . )

Not just in imputation: Set a seed value to create reproducible results.

in R: set.seed()

in mice(): argument seed
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18. Strategies for using MICE
18.3. Number of imputed datasets

Early publications on multiple imputation suggested that 3 – 5 imputations
are sufficient and this is still a common assumption in practice.[12]

The reasoning behind using a small number of imputed datasets was that
storage of imputed data was “expensive” (which is no longer the case) and
a larger number of imputations would only have little advantage.[13]

More recent work from various authors [21, 17, 5] considers the efficiency of
the pooled estimates, reproducibility of the results, statistical power of tests or
the width of the resulting confidence intervals compared to the width of the
true confidence intervals.
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18. Strategies for using MICE
18.3. Number of imputed datasets

A suggested rule of thumb is that the number of imputed datasets should
be similar to the percentage of incomplete cases.[21] Since this percentage
depends on the size of the dataset, the average percentage of missing values
per variable could be used as an alternative.[17]

Generally, using more imputed datasets should be preferred, especially in
settings where the computational burden allows for it. Even though results are
unlikely to change with a larger number of imputations, it can increase the
efficiency and reproducibility of the results.
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18. Strategies for using MICE
18.4. What to do with large datasets?

In imputation, generally the advice is to include as much information as
possible in the imputation models. Using a large number of predictor variables
makes the MAR assumption more plausible (and, hence, reduces bias due to
MNAR missingness) and can reduce uncertainty about the missing values.

This can work well in small or medium sized datasets (20 – 30 separate
variables, i.e. without interactions, variables derived from others, . . . ) however,
in large datasets (contain hundreds or thousands of variables) this is not
feasible.[17]
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18. Strategies for using MICE
18.4. What to do with large datasets?

For large datasets a possible strategy is to

Include all variables used in the analysis model(s) (including the
outcome!).

Include auxiliary variables if they are strong predictors of missingness.

Include auxiliary variables if they have strong associations with the
incomplete variables.

Use auxiliary variables only if they do not have too many missing
values themselves (and are observed for most of the incomplete cases of
the variable of interest).

Use auxiliary variables only in those imputation models for which they are
relevant (and exclude them for others using the predictor matrix).

Calculate summary scores from multiple items referring to the same
concept and use the summary score as predictor variable.

211 / 225



18. Strategies for using MICE
18.5. How much missing is too much?

There is no clear cut-off for the proportion of missing values that can be
handled adequately using MICE (or any other imputation method).

The amount of missingness that can be handeled depens on the information
that is available to impute it.

Are there strong predictor variabels available & observed?

Are there sufficient observed cases to get reliable estimates for the
predictive distribution?

Example:

In a set of N = 50 cases, 50% missing values leave 25 cases to estimate
the parameters of the predictive distribution.

In a large set of N = 5000 subjects, 50% missing cases leave 2500
observed cases to estimate parameters.
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18. Strategies for using MICE
18.6. Imputation of outcomes

Usually, missing outcome values are not imputed.

Why?
When there are no auxiliary variables, imputation and analysis model are equal.

Parameters of the imputation model are estimated on observed cases of
the outcome.

Imputed values will fit the assumed model perfectly.

Including imputed cases in the analysis does not add any information.

Exception:

When very strong auxiliary variables are available.

Outcomes may be imputed when one imputation is performed for several
analysis models, because not imputing the outcome(s) would mean

excluding cases with missing outcome(s) from the imputation, or
excluding the outcome variable(s) as predictor(s).
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18. Strategies for using MICE
18.7. Notes of caution & things to keep in mind

Multiple imputation is not a quick and easy solution for missing data. It
requires care and knowledge about

the data to be imputed (and the context of the data),

the statistical method used for imputation, and

the software implementation used.

Moreover

Never accept default settings of software blindly.

Question the plausibility of the MAR assumption. If it is doubtful, use
sensitivity analysis.

214 / 225



18. Strategies for using MICE
18.7. Notes of caution & things to keep in mind

Remember:

Use as much information as possible
include all covariates and the outcome
use auxiliary information
use the most detailed version of variables if possible

Avoid feedback from derived variables to their originals.

Imputation models must fit the data
(correct assumption of error distribution and functional forms and possible
interactions of predictor variables).

Think carefully how to handle variables that are derived from other
variables.

Consider the impact the visit sequence may have.

Choose an appropriate number of imputations.

Make sure the imputation algorithm has converged.

Use common sense when evaluating if the imputed values are plausible.

215 / 225



19. MICE and MI in the bigger picture
19.1. Other R packages that do imputation

In Part III of this course (and the second practical) we have worked with some
R packages that perform imputation or provide functionality for missing data
other than mice.

Currently, there are 218 packages available on CRAN that use the word
“missing” in either the titel or description of the package, 132 that use either
“impute” or “imputation” and 47 that use the word “incomplete”.

Not all of these packages perform imputation or are usefull for our purposes,
but even if we excluded those packages, the number of useful packages for
dealing with missing data would still be to large to mention them all.

á The mice package is often a good option, but certainly not the only
option to perform imputation!
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19. MICE and MI in the bigger picture
19.2. Imputation in other software

In this second half of the course, we have focused on (multiple) imputation
using R.

Naturally, R is not the only statistical software that can perform multiple
imputation.

Stata, SAS and MPLUS provide packages/functions to perform multiple
imputation and pool the results.

There are macros and additional packages available, e.g., smcfcs is
implemented for Stata as well

SPSS provides some functionality to perform MI
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19. MICE and MI in the bigger picture
19.3. Other approaches to handle missing values

Finally, we should not forget that MICE is not the only method to handle
missing values.

Besides MICE, multiple imputation can be performed in a joint model
approach (as for instance implemented in the R package jomo).

Furthermore,

direct likelihood methods,

fully Bayesian methods(as implemented in JointAI), or

weighted estimating equations

are valid alternative approaches when data are incomplete.
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