ST 790, Homework 4
Spring 2017

1. Recall the situation discussed in Section 5.1, in which the full data are Z = (Y, V), Y can
be missing, and V is always observed; and the goal is to estimate . = E(Y). As remarked
in Section 5.1, this is a nonparametric (so semiparametric) model. Define the iid observed
data (C;, CG;Y;, Vi), i = 1,...,N, as in Section 5.1, and assume as in that section that the
missingness mechanism is MAR, so that (5.2) holds and C L Y|V. Let u be the true value
of p.

In class, | remarked that it can be shown via semiparametric theory that the class of all
consistent and asymptotically normal (regular, asymptotically linear, RAL) estimators for p
based on the observed data under these conditions has elements of the form

L ixn[CY Ci—w(V)
“=N1§{ﬂvi>‘ vy W

where h(V) is an arbitrary function of V. In Section 5.1, it is stated that the optimal such
estimator, that will the smallest variance among all estimators in this class, is such that
h(V) = E(Y|V). In this problem, you will demonstrate this result.

As we discussed on page 117 in Section 4.9, generically, RAL estimators g for a parameter
6 in a statistical model are characterized by their influence functions ¢(-) and are such that if

N'/2(9 — 65) =+ N'(0, %), T is the covariance matrix of the influence function.

(a) Find the influence function of zi in (1), and show that the influence function has mean
zero.

(b) Find the variance of the influence function you found in (a) and show that it is minimized
when h(V) = E(Y|V).

Hint: Write the variance of the influence function as the expectation of the influence function,
squared. By cleverly adding and subtracting a term involving E(Y|V) and using the MAR
assumption, show that this expectation can be written as the sum of two uncorrelated terms,
from which the result will follow.

2. Consider again the data from the multicenter clinical trial in patients with age-related macular
degeneration (AMD) in Problem 3 of Homework 2 and Problem 1 of Homework 3, which
compared an experimental (active) treatment, interferon-«, with a placebo for the treatment
of patients with AMD. The study involved N = 240 participants.

We will carry out analyses of the visual acuity outcomes using weighted generalized esti-
mating equations as implemented in the experimental SAS procedure proc gee, assuming
that missingness is MAR. Recall that visual acuity was to be assessed at baseline (week 0)
and then at clinic visits at 4, 12, 24, and 52 weeks, but that some participants have missing
data due both to dropout and to intermittent missed visits. All have the baseline measure.
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The data are in the files armd . hwk4 . dat, with missing values indicated using the SAS “” con-
vention. The columns are (1) patient ID number; (2) baseline lines of vision; (3)-(6) change
from baseline lines of vision at 4, 12, 24, and 52 weeks; (7)-(11) visual acuity at baseline,
4,12, 24, and 52 weeks; (12) lesion grade; and (13) treatment, coded as 1 (placebo) and 4
(active treatment).



The full data are Z = (Y1, Yo, Y3, Ya, Y5, A, V), where Y is visual acuity at baseline, and
Ys, ..., Y5 are visual acuity at weeks 4, 12, 24, and 52; A is the treatment indicator such that
A = 0 if a patient was assigned to placebo an A = 1 if assigned to active treatment; and V is
lesion grade, recorded on an ordinal scale of 1, 2, 3, 4. In the data set for this problem on the
class webpage, A and V are available for all N individuals. (Note: Be sure to download this
data set again; one individual was missing lesion grade in the original data set, and a lesion
value for this individual has been imputed so that this variable can be used in development
of models for the cause-specific dropout hazards in (c) and (d) below.)

Letting Y = (Y4, ..., Y5)T and treating the visual acuity measures as continuous, consider a
semiparametric model for Y; of the form
E(Y,-/-\A,-=a,-)=uoj+6ja,-, j=1,...,5, i=1,...,N, (2)

where 3; = j11j — oj; p1oj and p4; are the means attimes j = 1, ..., 5 corresponding to baseline
and weeks 4, 12, 24, and 52 for placebo and active treatment, respectively; and A; = a; is
the treatment received by subject i. Thus, model (2) characterizes expected outcome given
treatment assignment, making no further assumptions on the joint distribution of the visual
acuity measures, in terms of the baseline covariate X = A (treatment assignment) and vector
of parameters 3 = (uo1, ... , f10s, B4, ---» B5) T . This is, of course, the same model for expected
outcome given treatment assumed in the previous homeworks, but without the assumption
of multivariate normality.

If full data were available on all N individuals, we could fit (2) via a GEE as in (5.28) of
the notes, adopting an assumed working covariance matrix. From previous analyses and
on the basis of parsimony, we will take the working correlation structure to be compound
symmetric (exchangeable) common to both treatment groups. This correlation matrix
involves a single correlation parameter «, say, which is estimated via moment methods in
GEE analyses. Of course, this assumption may be incorrect, so we will use the default robust
(empirical) sandwich standard errors.

As you know from previous analyses, only 188 of the 240 individuals have full data; of the
remaining 52 individuals, all but 8 exhibit monotone patterns of missingness (dropout). In
(a)—(d), you will use GEE and WGEE methods to obtain inference on 5 for the model (2)
using proc gee and, in (d), combining this with multiple imputation to account for the 8
individuals with nonmonotone missingness patterns.

In all analyses below with proc gee, you can specify the model (2) in the model statement
in an identical fashion to that used with proc mixed, taking week to be a classification vari-
able and using the noint option. In the model statement, the options dist=normal and
link=identity yield (2) and the appropriate estimating equations; these are the defaults so
can be omitted if you like.

(a) Naive analysis 1. Using proc gee, fit (2) with the working compound symmetric (ex-
changeable) correlation structure to the available data; that is, using all observed data on
all N = 240 individuals.

(b) Naive analysis 2. |dentify and delete the 8 individuals with nonmonotone missingness
patterns. Using proc gee, fit the same model as in (a) to the data from the 232 individuals
who have full data or exhibit monotone (dropout) patterns. Thus, this is another available
data analysis, restricted to individuals with monotone (or no) missingness.

(c) Weighted GEE analyses. Using the data on the 232 individuals with full data or ex-
hibiting monotone patterns of missingness, use proc gee to carry out a WGEE analysis to
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fit (2) assuming compound symmetric working correlation structure, using (i) subject level
weighting and (ii) occasion level weighting.

For (i) and (i), models for the dropout hazards are required. Letting H; = (Y3, ..., Y}, A, V) for
j=1,2,3,4, adopt the following models for j = 2, ..., 5:

logit{ A\;(Hj_1;1)) } = tboj + ¥1jYj—1 + 2 l(V > 2); (3)

in (3), note that the parameter v, the coefficient of the dichotomized lesion grade, /(V > 2),
is common to all j. Model (3) thus allows the dropout hazards to depend on the most recent
previous visual acuity measure and lesion grade at baseline.

(d) Combining WGEE with multiple imputation. The analyses in (a) and (b) are available
data analyses that do not take account of the missingness. WGEE methods provide a prin-
cipled approach under the assumption of MAR, but, as we have discussed, are feasible only
in the case of monotone missingness (dropout). Thus, the analyses in (c) are restricted to
the 232 individuals who have full data or exhibit such patterns.

Of course, excluding individuals from an analysis is always suspect. In this particular ap-
plication, only 8 of the N = 240 (3.3%) individuals exhibited nonmonotone patterns and
are excluded, so as a practical solution this may not be unreasonable. However, in most
applications, as we have seen in other data sets, the proportion of individuals exhibiting
nonmonotone patterns can be much higher, rendering methods such as WGEEs infeasible.

As suggested by Molenberghs and Kenward (2007, Section 14.6.4), an ad hoc approach in
this situation is to use multiple imputation to “fill in” only the intermittently missing values,
thereby creating M imputed data sets that exhibit only monotone missingness patterns.
The WGEE analysis of choice can then be carried out on each of the M imputed data sets,
and the results combined in the usual way, with standard errors, etc, obtained using Rubin’s
variance formula.

(Of course, WGEE methods are not likelihood based methods, so the theory for multiple
imputation does not strictly apply. However, the use of non-likelihood based analyses with
multiple imputation is widespread and seems to work well in practice, despite the absence of
theoretical justification. The following procedure based on monotone imputation likewise
has no theoretical justification.)

SAS proc mi implements such monotone imputation in the case where all variables are
assumed to be multivariate normal for imputation purposes, filling in only intermittently
missing values and yielding imputed data sets that exhibit only monotone missingness. This
is accomplished by invoking the impute=monotone option in the mcmc statement.

Carry out such an analysis as follows:

(i) Using proc mi and taking Yi,..., Y5 to be multivariate normal, create M = 10 imputed
data sets in which the intermittent missing values for the 8 individuals are filled in using the
monotone option as above.

(i) For each of the M data sets, carry out the WGEE analyses as in (c) using proc gee using
both subject level and occasion level weighting and assuming the compound symmetric
working correlation structure, with dropout hazards modeled as in (3). For each of these
analyses, output the estimate of g and its robust asymptotic covariance for use by proc
mianalyze; this can be accomplished using the following ods statement in the call to proc
gee:



ods output GEEEmpPEst=xxxparms ParmInfo=xxxinfo GEERCov=xxxcovb;

Here, “xxx” is whatever you choose to distinguish the output data sets for each of the subject
level and occasion level analyses. To obtain the robust asymptotic covariance matrices,
you will need to include the ecovb option in the repeated statement. See the proc gee
documentation for details.

(iii) For each type of WGEE analysis (subject/occasion level), combine the results for the
M data sets using proc mianalyze to obtain an estimate of 8 and standard errors for each
component of 3 via Rubin’s formula. Note: If you specified week as a class variable in proc
gee, you will need to use the classvar option in the parms option:

proc mianalyze parms(classvar=level)=xxxparms parminfo=xxxinfo
covb=xxxcovb wcov bcov;

(e) For each analysis in (a) —(d), write down the estimate and associated standard error for
Bs (difference in treatment means at 52 weeks) and obtain an appropriate test statistic and
associated p-value for testing the null hypothesis that 55 = 0 versus the alternative s # 0.

Compare the results across the analyses. Can you think of an explanation for similarities
and differences in the inferences across approaches? Which approach, if any, do you feel
comfortable recommending?



