
ST 790, Homework 1
Spring 2017

1. In EXAMPLE 1 of Chapter 1 of the notes, it is shown at the bottom of page 22 that the
complete case estimator for the mean µ of an outcome Y given in (1.18) under MNAR
satisfies

µ̂c p−→ E{Yπ(Y )}
E{π(Y )}

,

where π(y ) = pr(R = 1|Y = y ). At the top of page 23, it is noted that, if π(y ) is an increasing
function of y , so that the probability of observing Y increases with the value of Y then

E{Yπ(Y )}
E{π(Y )}

> µ.

Provide an argument justifying this claim.

2. Missingness in regression analysis. In this exercise, you will write a program to carry out
a simulation study to investigate the analytical results presented in EXAMPLE 2 on pages
28 - 30 of the notes. Here, the full data are Z = (Y , X ), where Y is a scalar outcome and
X is a vector of covariates, and we are interested in estimation of β in a model µ(x ;β) for
E(Y |X = x). Each of Y and X is either observed or is missing, so that R = (R1, R2), where
R1 = 1 if Y is observed and R1 = 0 if Y is missing, and similarly for R2 and X . As in the
notes, let π{r , (Y , X )} = pr(R = r |Y , X}, so that the probability of observing a complete case
(r = (1, 1)) is π{(1, 1), (Y , X )}. We will consider the three cases in the notes and the claims
regarding consistency of the least squares estimator β̂c for β based only on the complete
cases, obtained by solving (1.27):

(i) When π{(1, 1), (Y , X )} = π{(1, 1), X}, so depends only on X , the claim is that β̂c is
consistent under MNAR and MAR.

(ii) When π{(1, 1), (Y , X )} depends on Y , the claim is that β̂c is inconsistent in general
under MNAR and MAR.

(iii) When π{(1, 1), (Y , X )} does not depend on (Y , X ), which is the case if the missingness
mechanism is MCAR, β̂c is consistent.

The objective of a simulation is to approximate the properties of an estimator by generating
some large number S independent data sets from a known situation and computing the
estimator for each data set. The sample mean of the estimates over all S data sets is an
estimate of the mean of the sampling distribution of the estimator; similarly, the standard
deviation of the estimates over the S data sets is an estimate of the standard deviation of
the sampling distribution (how good these quantities are at capturing the true features of the
sampling distribution obviously depends on the size of S).

If an estimator is consistent, we expect, for reasonably large sample sizes where we might
expect large sample theory to be a good approximation, the sample mean of the S estimates
to be very close to the true value of the parameter being estimated. For a regression param-
eter β with p elements and estimator β̂, we can assess this by computing for each element
βk , k = 1, ... , p, the Monte Carlo mean S−1 ∑S

s=1 β̂s,k and Monte Carlo bias

S−1
S∑

s=1

β̂s,k − β0,k ,
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where β̂s is the estimate calculated for the sth data set and β0 is the true value of β used
to generate the data sets. We would expect the Monte Carlo mean/bias to be close to the
true value/zero for a consistent estimator. Likewise, the Monte Carlo standard deviation, the
usual standard deviation of the S estimates, reflects the variation in the sampling distribution
of β̂.

(a) In your favorite programing language, write a program to carry out a simulation of the
performance of the complete case least squares estimator β̂c under a known data generation
scenario. Your program should have the following features:

• Each of S data sets should contain N observations, where S = 1000 and N = 200. For
each data set, for each i = 1, ... , N, generate independently Xi1 ∼ N (10, 32) (standard
deviation 3) and Xi2 as Bernoulli with pr(X2 = 1) = 0.4. Then generate

Yi = β1 + β2Xi1 + β3Xi2 + εi ,

where εi are independent N (0, 82) (standard deviation 8), and β = (20, 5,−5)T . Thus,
the true value β0 = (20, 5,−5)T , and the model is µ(x ;β) = β1 + β2x1 + β3x2.
• You will run your program three times, once under each of scenarios (i)–(iii). In each

case, for each of the S data sets and for each i = 1, ... , N, generate an indicator of
observing a complete case, i.e., observing (Yi , Xi1, Xi2), by calculating

πi = exp(Ui )/{1 + exp(Ui )}, Ui = ψ1 + ψ2Xi1 + ψ3Xi2 + ψ4Yi + ψ5Xi1Yi + ψ6Xi2Yi ,

and then generating Ci , the indicator of whether or not the i th observation is a complete
case (Ri = (1, 1)), as Bernoulli with pr(Ci = 1|Xi1, Xi2, Yi ) = πi . For each case, take ψ as
follows:

Case (i) ψ = (2,−0.025, 0.5, 0, 0, 0)T

Case (ii) ψ = (6, 0, 0,−0.075,−0.003, 0.05)T

Case (iii) ψ = (0.5, 0, 0, 0, 0, 0)T

Thus, you should write your program so that it can be run for each case by simply
changing the value of ψ.
• For each case, for each of the S data sets of size N, calculate two least squares esti-

mates of β in the above linear model: (1) the ideal full data estimate β̂f , say, that could
be calculated if the full data were available, which will serve as a “gold standard;” and
(2) the complete case estimate β̂c based only on the observations with Ci = 1. For each
data set s = 1, ... , S, save the values of β̂f

s and β̂c
s and the proportion pc

s out of the N
intended observations that were complete cases.
• For each case, calculate the Monte Carlo mean, bias, and standard deviation of the S

estimates and the average of the proportions pc .
• Note: Most languages, including SAS and R, allow generation of random deviates from

normal and binomial distributions. For each run of your program, set the “starting seed”
for the random number generation so that you can reproduce the results rather than let
the random number generator start where it likes. The random number generator will
update the seed automatically and internally each time a random number generation
function is called, so you need only to set the seed initially at the beginning of your pro-
gram. Random number generators work by generating a sequence of random deviates
that should be approximately independent. Thus, you do not want to change the seed
yourself over the course of the simulation once it starts.
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(b) Discuss whether or not the results are in line with the analytical results presented in the
notes. Do you think that mindlessly proceeding with the default (in SAS and other software)
complete case analysis when there are missing data is to be recommended?

3. Missing at random and dropout (monotone missingness). As discussed in the notes, missing
at random (MAR) corresponds to the situation where the probability of missingness patterns
depends only on the data that are observed. In the notation in the notes, then, MAR cor-
responds to assuming that pr(R = r |Z ) = pr(R = r |Z(r )). When missingness is monotone,
as in the case of dropout in a longitudinal study, on page 16 of the notes we defined for full
data Z = (Z1, ... , ZT ) collected over T times tj , j = 1, ... , T , with corresponding missingness
indicators (R1, ... , RT ), D = 1 +

∑T
j=1 Rj , where D = j indicates that Z1, ... , Zj−1 are observed

and Zj , ... , ZT are missing, so D = T + 1 means that the full data are observed. As on page
16, write Z(j) = (Z1, ... , Zj−1) when using this notation.

In this situation, it is convenient to represent the probability of missingness through the haz-
ard function

λj (Z ) = pr(D = j |D ≥ j , Z ), j = 1, ... , T + 1.

(Note that λj (Z ) = 1 for j = T + 1.)

(a) Show that there is a one-to-one relationship between

pr(D = j |Z ) for j = 1, ... , T + 1

and λj (Z ) for j = 1, ... , T . That is, for any j = 1 ... , T , λj (Z ) can be expressed in terms of
pr(D = j ′|Z ), j ′ = 1, ... , j , and, for any j = 1, ... , T + 1, pr(D = j |Z ) can be expressed in terms
of λj ′(Z ), j ′ = 1, ... , j .

(b) Show that MAR holds, i.e.,

pr(D = j |Z ) = pr(D = j |Z(j))

for all j = 1, ... , T + 1 if and only if
λj (Z ) = λ(Z(j))

for all j .

4. More on longitudinal data and dropout. In EXAMPLE 3 on pages 30 - 32 of the notes, we
discussed the situation where Z = (Y1, ... , YT ), where Yj is a scalar outcome recorded at
time tj , j = 1, ... , T . In this problem, we will consider a more general situation where, along
with Yj , a scalar covariate X is also recorded at baseline (j = 1) and does not change with
j . Letting Y = (Y1, ... , YT )T , suppose that interest focuses on a model for E(Y |X = x) of the
form

µ(x ;β) = {µ1(x ;β), ... ,µT (x ;β)},

where µj (x ;β) depends only on time tj and x . As on page 18 of the notes, this is a semi-
parametric model, as only this conditional expectation, and not the entire distribution of Z , is
modeled parametrically, with the rest of the joint density of Y and X left unspecified.

In this situation, analogous to (1.32) of the notes, a standard approach to estimation of β is
to solve a GEE of the form

N∑
i=1

DT (Xi ;β)V−1(Xi ;β)

 Yi1 − µ1(Xi ;β)
...

YiT − µT (Xi ;β)

 = 0, (1)
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where DT (x ;β) is a (p × T ) matrix of partial derivatives of µ(x ;β) multiplied by a (T × T )
working covariance matrix V(x ;β), both of which depend on the observation times and pos-
sibly on x . A GEE like (1) can be solved, and an estimate β̂ obtained, using, for example,
SAS proc genmod or the R packages gee or geepack.

In the case of dropout at time j + 1, we observe (Y1, ... , Yj )T and X only, and, analogous to
(1.33), using the dropout notation, it is common to base estimation of β̂ on these available
data, in which case one would solve

N∑
i=1


T∑

j=1

I(Di = j + 1)DT
j (Xi ;β)V−1

j (Xi ;β)

 Yi1 − µ1(Xi ;β)
...

Yij − µj (Xi ;β)


 = 0, (2)

where DT
j (x ;β) (p× j) and Vj (x ;β) (j × j) are the corresponding submatrices of DT (x ;β) and

V(x ;β), In SAS, proc genmod will automatically disregard missing values (indicated using “.”
in the data set) and solve (2), and a function like R gee can be instructed to do the same
(where missing values are indicated using “NA” in the data set).

The working covariance model is a “guess” at the covariance matrix var(Y |X ) and is meant
to capture possible correlation over the tj among observations on the same individual. It
may or may not be correct; accordingly, it is important to use so-called “sandwich” or
“robust/empirical” standard errors that take account of this possibility rather than “model-
based/naive” standard errors that assume it is correct. If you take ST 732 and ST 793, you
will learn all about this.

In this problem, we will use a world-famous data set to examine the consequences of solv-
ing (2) when there is dropout/monotone missingness that is MAR, and we will learn how
to implement (1) and (2) in SAS and/or R. The so-called orthodontic or dental data were
presented by Pothoff and Roy (1964), and are from a study conducted at UNC- Chapel Hill
involving 27 children, 16 boys and 11 girls. On each child, the distance (mm) from the center
of the pituitary to the pterygomaxillary fissure (“dental distance” Y ) was made at ages 8, 10,
12, and 14 years of age. There were no missing data; i.e., full data were observed. Interest
focused on comparing the growth patterns between boys and girls. As you will evaluate in
(a) below, letting (t1, ... , t4) = (8, 10, 12, 14) and X = 0 for girls and X = 1 for boys, a possible
model for E(Y |X = x) takes

µj (x ;β) = β1 + β2x + β3tj + β4xtj , (3)

so that the mean is represented as a straight line for each gender with intercept and slope
β1 and β3 for girls and (β1 + β2) and (β3 + β4) for boys. The difference in growth patterns is
thus reflected in β4, which in (3) represents the difference in slope between boys and girls.

In the file dental.dat on the class website, you will find the original, full data. The file has
5 columns: (1) observation number, (2) child number (1-27), (3) age, (4) distance measure-
ment, and (5) indicator of gender (0=girl, 1=boy).

(a) In your favorite programming language, calculate the mean dental distance for girls and
boys separately at each age, and plot and connect the means at each tj for girls and boys
on the same axes. Is (3) a reasonable model based on the visual evidence?

(b) Using SAS or R (your choice), fit the model (3) using the full data by solving (1) assum-
ing that the working covariance matrix is a constant variance σ2 times an exchangeable or
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compound symmetric correlation matrix with 1s on the diagonal and the same parameter ρ
in all off-diagonal positions. Here, ρ thus represents a pattern of correlation that is the same
regardless of how close or far apart two observations are in time (age).

This may be accomplished as follows. In SAS using proc genmod:

data dent1; infile ’dental.dat’;

input obsno child age distance gender;

run;

proc genmod data=dent1;

class child;

model distance = gender age gender*age / dist=normal link=identity;

repeated subject=child / type=exch corrw modelse;

run;

In interpreting the results, you should look at the table Analysis Of GEE Parameter Estimates,

Empirical Standard Error Estimates; the estimate of σ is the Scale in the Model-Based

Standard Error Estimates table.

In R using the function gee (you may have to install.packages(‘‘gee’’); alternatively, if
you are familiar with GEEs and prefer to use geepack, feel free):

dent1 <- read.table("dental.dat")

colnames(dent1) <- c("num","child","age","distance","gender")

library(gee)

gee.full <- gee(distance ~ age + gender+ age*gender, id=child, family=gaussian,

corstr="exchangeable",data=dent1)

summary(gee.full)

In interpreting the results, you should use the Robust S.E.; the estimate of σ2 is the
Estimated Scale Parameter.

In both cases, the estimates of β and ρ are self-explanatory.

(c) In the files dental dropout sas.dat and dental dropout R.dat, which are in the same
format as the original data, dropout according to a MAR mechanism has been artificially
induced; the first file indicates a missing value by “.” and the second by “NA” for use with SAS
and R, respectively.

Using SAS or R (your choice), fit the model (3) using these available data by solving (1)
assuming that the working covariance matrix is the same as in (b).

This may be accomplished as follows. In SAS using proc genmod:

data dent2; infile ’dental_dropout_sas.dat’;

input obsno child age distance gender;

run;

proc genmod data=dent2;

class child;
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model distance = gender age gender*age / dist=normal link=identity;

repeated subject=child / type=exch corrw modelse;

run;

In R, using gee, the code is

dent2 <- read.table("dental_dropout_R.dat")

colnames(dent2) <- c("num","child","age","distance","gender")

library(gee)

gee.avail <- gee(distance ~ age + gender+ age*gender, id=child, family=gaussian,

corstr="exchangeable",na.action=na.omit,data=dent2)

summary(gee.avail)

(d) Compare the estimates of β between the analyses based on the full and available data.
Do they coincide with the implications of the analytical arguments in the notes regarding the
behavior of the estimator for β under MAR using available data?

(e) As noted above, interest focuses on the null hypothesis Ho : β4 = 0 versus the alternative
H1 : β4 6= 0. Comment on the implications of not having full data for making inference on β4.

5. Last Observation Carried Forward. As discussed in Section 2.3 of the notes, the LOCF
approach is controversial, and the analytical results there suggest that it need not lead to
a consistent estimator for the mean at the last time point, E(YT ), in a longitudinal study
with dropout. To examine possible problems associated with LOCF in a specific situation,
consider again the dental data. In your favorite programming language, do the following
using the dental data:

(a) Based on the full data, calculate the sample means and standard errors at tT = 14 for the
boys and girls separately, and carry out a usual two-sample test (e.g., a t-test) of whether or
not the means differ.

(b) From the data set for which dropout according to a MAR mechanism was artificially
induced (in the files dental dropout sas.dat and dental dropout R.dat), create a new
data set in which the LOCF convention is used to impute all missing observations YiT (hint:
It may be easier to do this if you first reconfigure the data set to be in the form of 1 data
record/individual, so that the first line is “1 0 21 20 21.5 NA” or “1 0 21 20 21.5 .”). Based
on the resulting data set, calculate the sample means and standard errors at tT = 14 for the
boys and girls separately, and carry out the same test you performed in (a).

(c) Comment on the results.
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