
CHAPTER 6 ST 790, MISSING DATA

6 Pattern Mixture Models

A common theme underlying the methods we have discussed so far is that interest focuses on making

inference on parameters in a parametric or semiparametric model for the full data Z given observed

data (R, Z(R)). As we discussed in Section 3.2, different approaches can be deduced by considering

various factorizations of the density of the ideal full data (R, Z ), which are of course unobservable.

A natural choice when a full data model pZ (z; θ) has been posited is the selection model factorization

pR,Z (r , z) = pR|Z (r |z)pZ (z). (6.1)

An appealing feature of (6.1) is that the marginal distribution of the full data Z appears explicitly.

Accordingly, with posited models for the missingness mechanism and full data, we have

pR,Z (r , z; θ,ψ) = pR|Z (r |z;ψ)pZ (z; θ), (6.2)

where ψ is a nuisance parameter characterizing the missingness mechanism. In (6.2), if the parame-

ters ψ and θ are assumed to be variation independent, under MAR, as we have seen in Chapters 3-

5, it is possible to estimate θ using likelihood, multiple imputation, or inverse probability weighted

methods. Thus, under a selection model factorization and these assumptions, direct inference on the

full data model of interest is possible. Of course, implementation of likelihood or inverse probability

weighted methods can be challenging in some situations, and multiple imputation methods have the

potential drawbacks we discussed in Chapter 4.

As we discussed in Section 3.2, another way of writing the joint density of the ideal full data is via the

pattern mixture factorization

pR,Z (r , z) = pZ |R(z|r )pR(r ). (6.3)

In this chapter, we discuss inference based on adopting the factorization (6.3).

In contrast to the inferential methods based on the selection model factorization (6.1) that we have

discussed to this point, methods based on (6.3) do not necessarily involve making the assumption

of a MAR mechanism. Instead, they involve making other types of assumptions. Thus, as we will

demonstrate shortly, they represent a fundamentally different approach to addressing inference in

the presence of missing data. Not surprisingly, this approach has its own set of challenges.
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6.1 Pattern mixture model framework

PATTERN MIXTURE MODEL: As we noted in Section 3.2, one may posit models for each of the

components in the pattern mixture factorization (6.3). In (6.3), the first component pZ |R(z|r ) is the

density of the full data Z given the missing data pattern R = r . Usually, as noted in Section 3.2, R

takes only a finite number of values r , and, in general, the distribution of Z for individuals having each

pattern is expected to be different. Accordingly, for pattern r , consider the model

pR,Z (r , z; θr ,ψ) = pZ |R(z|r ; θr )pR(r ;ψ). (6.4)

In (6.4), a separate model for pZ |R(z|r ) is posited for each r , so we allow the parameter in the model to

be r -dependent. Because R takes on only a finite number of values, pR(r ;ψ) is simply the probability

mass function for the discrete distribution of possible missingness patterns, represented by a

single parameter ψ.

The parameter θ, comprising the distinct elements of θr for all observed missingness patterns r , and

ψ in (6.4) have different interpretations from those in (6.2). In particular, θ in (6.4) is not the same

as the parameter θ in (6.2) and is consequently not the parameter of direct interest. As we discuss

below, if interest focuses on features of the distribution of the full data, these must be deduced

indirectly from (6.4).

The model (6.4) is referred to as a pattern mixture model because, for each pattern of missing-

ness r , we model the conditional density of the full data Z given each pattern of missingness R = r .

Because R is always observed, ψ can be estimated easily from the observed data.

Consequently, under the pattern mixture model (6.4), the main challenge is to estimate the parame-

ters θr that characterize the model for the conditional density of Z given each missing data pattern.

DRAWBACK: One of the obvious drawbacks of pattern mixture models is that the marginal density

of the full data is not explicitly represented in the formulation. Instead, the distribution of the full

data is represented as the mixture

pZ (z; θ,ψ) =
∑

r

pZ |R(z|r ; θr ) pR(r ;ψ), (6.5)

where, as usual, the sum in (6.5) is over all observed missingness patterns.

Accordingly, if features of the distribution of the full data are of inferential interest, these are repre-

sented only through a potentially complicated combination of θ and ψ.
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ADVANTAGE: An advantage of adopting a pattern mixture model is that assumptions that allow

identifiability are more explicit than with selection models, and estimation of the parameter θ in (6.4)

is fairly straightforward, as we demonstrate shortly.

MONOTONE MISSINGNESS: Because pattern mixture models involve modeling the conditional dis-

tribution of the full data Z given the missingness pattern R = r for each realized value r , such models

are not useful if the number of missingness patterns is large. This is because, in this case, the

number of observations within a given pattern may be small, so that the resulting estimates of these

conditional distributions are not stable.

Consequently, pattern mixture model methods have not generally been applied to problems with

arbitrary missingness. Rather, the focus has been on their application in problems with monotone

missingness, where the number of patterns is limited. Accordingly, in this chapter, we consider the

most familiar situation with monotone missingness, that of longitudinal data with dropout.

As usual, write the full data as

Z = (Z1, ... , ZT ),

where Zj is observed at time tj , t1 < · · · < tT . Define R = (R1, ... , RT )T and the dropout indicator

D = 1 +
T∑

j=1

Rj ,

so that D = j corresponds to dropout at time tj . Using notation defined in Chapter 1, with D = j ,

Z(j) = (Z1, ... , Zj−1) is observed and Z(j̄) = (Zj , ... , ZT ) is missing, j = 2, ... , T + 1, where D = T + 1

means Z = (Z1, ... , ZT ) is observed. The observed data are then (D, Z(D)), and the sample data are

(Di , Z(Di )i ), i = 1, ... , N. Assume that Z1 is always observed.

Under these conditions, for given j , we can write the pattern mixture factorization as

pZ ,D(z, j ; θj ,ψ) = pZ |D(z|j ; θj ) pD(j ;ψ). (6.6)

Analogous to (6.5), the marginal density of the full data Z is then the mixture

pZ (z; θ,ψ) =
T+1∑
j=2

pZ |D(z|j ; θj ) pD(j ;ψ). (6.7)

Contrast (6.6) with the selection model factorization, which instead involves a model for the dropout

process pD|Z (j |z).
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ASSUMPTIONS: Under the selection model factorization, we make assumptions directly on the

dropout process. In Chapter 5, we made a MAR assumption, which implies that pD|Z (j |z) satis-

fies

pr(D = j |Z ) = pr(D = j |Hj−1) =
j−1∏
`=1

{1− λ`(H`−1)}λj (Hj−1), (6.8)

j = 2, ... , T + 1, depends only on the observed history Hj−1 = Z(j) = (Z1, ... , Zj−1) through time j − 1.

We then modeled the dropout hazards λj (Hj−1) as λj (Hj−1;ψj ), say, for each j and fit these models

to the observed data. Letting ψ be the collection of ψj for j = 2, ... , T + 1, from (6.8), these hazard

models then induce models pD|Z (j |z;ψ) for each j depending on the components of ψ through ψj .

Instead, in the pattern mixture formulation (6.6), the marginal distribution of D is modeled directly.

Again, because there is a finite number of dropout patterns, this distribution is discrete, so that

pD(j ;ψ) in (6.6) is a model for its probability mass function. Thus, ψ in (6.6) can be estimated

easily because D is always observed.

Of course, the catch is that we need to develop models pZ |D(z|j ; θj ) for each different dropout pattern

D = j . In doing so, we have to recognize that, as noted above, for any given pattern D = j , we observe

only Z(j) = (Z1, ... , Zj−1), whereas Z(j̄) = (Zj , ... , ZT ) is missing.

To this end, note that, for D = j , we can write

pZ |D(z|j) = pZ(j)|D(z(j)|j) pZ(j̄)|Z(j),D(z(j̄)|z(j), j). (6.9)

• The first term on the right hand side of (6.9), pZ(j)|D(z(j)|j), involves only observed data and thus

is identified and can be modeled and fitted directly using the observed sample data.

• However, the second term on the right hand side of (6.9), pZ(j̄)|Z(j),D(z(j̄)|z(j), j), involves the un-

observed part of Z for D = j , and, accordingly, cannot be identified and thus modeled and

fitted based on the observed sample data.

RESULT: The key challenge in the use of pattern mixture models is the need to make identifiability

assumptions that allow us to deduce pZ |D(z|j), and in particular

pZ(j̄)|Z(j),D(z(j̄)|z(j), j), j = 1, ... , T

from the distribution of the observed data (D, Z(D)).
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We first examine an example where identifiability of the pZ |D(z|j) is achieved directly by making

simple modeling assumptions that provide a way of extrapolating the observed data to unobserved

data.

EXAMPLE: Longitudinal continuous outcome with dropout. Let the full data be

Z = (Y1, ... , YT ),

where Yj are scalar, continuous outcomes observed at fixed time points tj , j = 1, ... , T .

Suppose interest focuses on estimating the intercept and slope in an assumed simple linear regres-

sion model in time for the full data; i.e., we assume

E(Yj ) = β0 + β1tj , (6.10)

and we are interested in inference on β0 and β1 in this (semiparametric) full data model.

This would be straightforward with full data; however, suppose that some individuals drop out. For

simplicity, assume that all individuals have Y1 and Y2 observed (so the outcome is observed on all

individuals at t1 and t2), but can drop out subsequently. Thus, we have possible dropout patterns

D = j = 3, ... , T + 1.

Suppose further that we are willing to assume that

E(Y`|D = j) = β0j + β1j t`, ` = 1, ... , T , j = 3, ... , T + 1. (6.11)

In (6.11), we assume that there is a linear trajectory within each dropout pattern, but with intercept

and slope that are pattern-dependent. Note that (6.11) is a model for all Y`, ` = 1, ... , T , even those

that are missing under dropout pattern D = j . That is, (6.11) is a model for the full data Z given

dropout pattern D = j and depends on the pattern-specific parameter βj = (β0j ,β1j ).

Under the foregoing assumptions,

E(Yj ) = E{E(Yj |D)}

=
T +1∑
j=3

E(Yj |D = j)pr(D = j)

=
T +1∑
j=3

(β0j + β1j tj ) pr(D = j) (6.12)

=


T +1∑
j=3

β0j pr(D = j)

 +


T +1∑
j=3

β1j pr(D = j)

 tj , (6.13)

where (6.12) follows from substituting the assumed model in (6.11).
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Comparing (6.13) to (6.10), this formulation implies that the parameters of interest β0 and β1 in the

full data model (6.10) are each a weighted average of the assumed pattern-specific intercepts and

slopes; that is, we have the correspondences

β0 =
T+1∑
j=3

β0j pr(D = j), β1 =
T +1∑
j=3

β1j pr(D = j).

Each of the pattern-specific intercepts and slopes can be estimated easily from the observed data

within each pattern; that is, for each j , β0j and β1j can be estimated by fitting the model (6.11) using the

observed data on individuals for whom D = j . Because all individuals have Y1 and Y2 observed, this is

possible for all dropout patterns. Denote these pattern-specific estimates by (β̂0j , β̂1j ), j = 3, ... , T +1.

We can also estimate pr(D = j) for j = 3, ... , T + 1 by the observed proportions of individuals ψ̂j , say,

exhibiting each dropout pattern.

Then from (6.13), we can estimate β0 and β1 by

β̂0 =
T+1∑
j=3

β̂0j ψ̂j , β̂1 =
T +1∑
j=3

β̂1j ψ̂j .

NONIDENTIFIABLE ASSUMPTION: This approach to estimation has considerable appeal, as the

resulting estimators for the parameters of interest in the full data model are easy to implement.

However, it is important to recognize that this approach is predicated on a critical assumption,

namely, that in (6.11),

E(Y`|D = j) = β0j + β1j t`, ` = 1, ... , T , j = 3, ... , T + 1.

• The assumption of a linear relationship within a dropout pattern D = j implies the belief that

the observed data Y1, ... , Yj−1 under that pattern can be extrapolated to the data Yj , ... , YT

that are not observed.

• Clearly, this an assumption that is not identifiable from the observed data.

RESULT: This example illustrates in a simple setting the type of unverifiable assumption that might be

made in a pattern mixture model framework to identify the densities pZ |D(z|j). Here, the structure

of the problem is such that parameters in the full data model of interest can be deduced directly from

the resulting mixture (6.7).
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In more general settings, such a simple approach may not be possible. In the next section, we

discuss more general strategies that involve making identifying assumptions for the unobservable

distributions

pZ(j̄)|Z(j),D(z(j̄)|z(j), j) j = 1, ... , T (6.14)

from the distribution of the observed data.

RELATIONSHIP TO MISSINGNESS MECHANISM: The identifying assumption that is made, along

with the observable distributions

pZ(j)|D(z(j)|j) and pD(j),

induce a probability distribution for the missingness (dropout) mechanism,

pD|Z (j |z),

in some possibly complicated fashion.

That is, using (6.9) and Bayes rule, the dropout mechanism can be represented as

pD|Z (j |z) =
pZ(j)|D(z(j)|j) pZ(j̄)|Z(j),D(z(j̄)|z(j), j)pD(j)∑T +1

j=2 pZ(j)|D(z(j)|D = j) pZ(j̄)|Z(j),D(z(j̄)|z(j), D = j) pr(D = j)
. (6.15)

Consequently, within the pattern mixture model framework, it is evident that assumptions made to

identify the unobservable distributions in (6.14) will not necessarily lead to the MAR assumption.

This is in contrast to working within a selection model framework, where making the MAR assump-

tion explicitly is the natural way to achieve identifiability.

Of course, neither the assumptions made on the unobservable distribution pZ(j̄)|Z(j),D(z(j̄)|z(j), j) in a

pattern mixture model approach nor the MAR assumption made in a selection model approach can

be validated from the observed data.

6.2 Modeling strategies for pattern mixture models

We now consider general strategies for developing models pZ |D(z|j ; θj ), say, for the density pZ |D(z|j)

for each j based on various types of identifying assumptions.
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Given models pZ |D(z|j ; θj ) so constructed, a mixture model for the full data is then induced as in

(6.7) as

pZ (z; θ,ψ) =
T+1∑
j=2

pZ |D(z|j ; θj ) pD(j ;ψ). (6.16)

In (6.16), pD(j ;ψ) can be represented by the probability mass function

pr(D = j) = ψj , j = 2, ... , T + 1,
T +1∑
j=2

ψj = 1, (6.17)

and the ψj estimated by the sample proportions of individuals with D = j .

EXAMPLE: Throughout this section, we illustrate in the context of a simple example. Suppose that

the full data are

Z = (Y1, Y2, Y3)

so that T = 3 and T + 1 = 4, where Yj are scalar, continuous outcomes observed at fixed time points

tj , j = 1, 2, 3. Let Y = (Y1, Y2, Y3)T . Interest focuses on estimating the mean E(Y ) = µ = (µ1,µ2,µ3)T

and covariance matrix var(Y ) = Σ.

Here, the models pZ |D(z|j ; θj ), j = 2, 3, 4, are of the form

pY1,Y2,Y3|D(y1, y2, y3|2; θ2), pY1,Y2,Y3|D(y1, y2, y3|3; θ3), pY1,Y2,Y3|D(y1, y2, y3|4; θ4). (6.18)

Substituting (6.18) and (6.17) in (6.16), the implied full data model is

pY1,Y2,Y3(y1, y2, y3; θ,ψ) =
4∑

j=2

pY1,Y2,Y3|D(y1, y2, y3|j ; θj )ψj . (6.19)

The parameters of interest, µ and Σ, would need to be derived from (6.19) and would clearly be

possibly complicated functions of θ and ψ.

For example, letting

νj (θj ) =
∫

(y1, y2, y3)T pY1,Y2,Y3(y1, y2, y3|j ; θj ) dy1 dy2 dy3,

be the mean vector for the j th component in the mixture (6.19), it follows from (6.19) that

µ =
4∑

j=2

νj (θj )ψj .

Calculation of an expression for Σ is more involved (try it).
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MODELING pZ |D(z|j) UNDER IDENTIFYING ASSUMPTIONS: From (6.9), we have for each j =

2, ... , T + 1

pZ |D(z|j) = pZ(j)|D(z(j)|j) pZ(j̄)|Z(j),D(z(j̄)|z(j), j). (6.20)

(i) The first term on the right hand side of (6.20) depends on observed data, so can be modeled

directly based on the observed sample data; e.g., by a parametric model

pZ(j)|D(z(j)|j ; ξj ), j = 2, ... , T + 1, (6.21)

say. For each j , this model can be posited and fitted using the observed sample data on Z(j)

from individuals for whom D = j ; i.e., who dropped out at tj and thus have Z(j) = (Z1, ... , Zj−1)

observed.

(ii) The second term on the right hand side of (6.20) is not identifiable from the observed data

without some type of identifiability assumption.

EXAMPLE, (i): The required models in (6.21) are

pY1|D(y1|2; ξ2), pY1,Y2|D(y1, y2|3; ξ3), pY1,Y2,Y3|D(y1, y2, y3|4; ξ4), (6.22)

Each parametric model in (6.22) can be developed and fit using the observed data from individuals

exhibiting each dropout pattern j = 2, 3, 4.

Proposed modeling strategies for (ii) are based on writing the second term in (6.20) as

pZ(j̄)|Z(j),D(z(j̄)|z(j), j) =
T∏
`=j

pZ`|Z(`),D(z`|z(`), j). (6.23)

From (6.23), the challenge then boils down to making assumptions on the unobservable conditional

densities

pZ`|Z(`),D(z`|z(`), j), ` = j , ... , T , j = 2, ... , T . (6.24)

We describe three main types of assumptions on (6.24). Section 3.6 and Chapter 16 of Molenberghs

and Kenward (2007) present additional details and accounts of implementation.
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CCMV: Complete case missing values. This approach is proposed by Little (1993). Here, it is

assumed that (6.24) can be written as

pZ`|Z(`),D(z`|z(`), j) = pZ`|Z(`),D(z`|z(`), T + 1), ` = j , ... , T , j = 2, ... , T . (6.25)

That is, in (6.25), it is assumed that the densities for the missing part of Z given the observed for

each pattern D = j , j = 2, ... , T , are the same as those for the complete cases for whom D = T + 1.

Note that the densities pZ`|Z(`),D(z`|z(`), T + 1) are always observable, so can be modeled and fitted

based on the observed sample data.

Under the CCMV approach, then, one must deduce models for

pZ`|Z(`),D(z`|z(`), T + 1), ` = 2, ... , T . (6.26)

One possibility would be to posit directly parametric models pZ`|Z(`),D(z`|z(`), T + 1;ϑ`), say, for

` = 2, ... , T . However, note that, given that we have already specified identifiable models for

pZ(j)|D(z(j)|j ; ξj ) as in (6.21), the models for (6.26) should be compatible with these identifiable models.

We demonstrate how this is accomplished in the example.

EXAMPLE, (ii), CCMV: From (6.26), we require models for

pY3|Y2,Y1,D(y3|y2, y1, 4), pY2|Y1,D(y2|y1, 4). (6.27)

From (6.22), we have already posited a model

pY1,Y2,Y3|D(y1, y2, y3|4; ξ4). (6.28)

In principle, we can thus obtain

pY1,Y2|D(y1, y2|4; ξ4) =
∫

pY1,Y2,Y3(y1, y2, y3|4; ξ4) dy3, (6.29)

pY1|D(y1|4; ξ4) =
∫

pY1,Y2|D(y1, y2|4; ξ4) dy2,

from whence it follows that the required models in (6.27) can be deduced as

pY3|Y2,Y1,D(y3|y2, y1, 4; ξ4) =
pY1,Y2,Y3|D(y1, y2, y3|4; ξ4)

pY1,Y2|D(y1, y2|4; ξ4)
, (6.30)

pY2|Y1,D(y2|y1, 4; ξ4) =
pY1,Y2|D(y1, y2|4; ξ4)

pY1|D(y1|4; ξ4)
.

Thus, under the CCMV assumption given a model (6.28), models for the conditional densities in

(6.27) are automatically induced from the model (6.28).
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From (6.20) and (6.23), models for pZ |D(z|j), j = 2, 3, 4, are thus given by

pY1,Y2,Y3|D(y1, y2, y3|2; ξ2, ξ4) = pY1|D(y1|2; ξ2)
{

pY2|Y1,D(y2|y1, 4; ξ4) pY3|Y2,Y1,D(y3|y2, y1, 4; ξ4)
}

,

(6.31)

pY1,Y2,Y3|D(y1, y2, y3|3; ξ3, ξ4) = pY1,Y2|D(y1, y2|3; ξ3)pY3|Y2,Y1,D(y3|y2, y1, 4; ξ4). (6.32)

and pY1,Y2,Y3|D(y1, y2, y3|4; ξ4) in (6.22). The expressions on the right hand sides of (6.31) and (6.32)

as well as this last density are all in terms of the models in (6.22) based on the observed data. Note

that we thus have

θ2 = (ξT
2 , ξT

4 )T , θ3 = (ξT
3 , ξT

4 )T , θ4 = ξ4,

and we can define θ = (ξT
2 , ξT

3 , ξT
4 )T to be the vector of distinct elements of θ2, θ3, θ4.

Substituting all of the above in (6.19) yields resulting full data mixture model.

MULTIVARIATE NORMALITY: As a specific example, one could assume that each of the densities

in (6.22), namely,

pY1|D(y1|2; ξ2), pY1,Y2|D(y1, y2|3; ξ3), pY1,Y2,Y3|D(y1, y2, y3|4; ξ4),

is normal. In this case, ξj would comprise mean and distinct variance and covariance parameters;

i.e., in obvious notation, ξ2 = (µ(2),σ(2)2)T , ξ3 comprises µ(3) = (µ(3)
1 ,µ(3)

2 )T and the distinct elements

of a (2× 2) covariance matrix Σ(3), and ξ4 comprises µ(4) = (µ(4)
1 ,µ(4)

2 ,µ(4)
3 )T and the distinct elements

of a (3× 3) covariance matrix Σ(4).

It then follows by properties of the multivariate normal distribution, including the results for condi-

tional densities given in (4.35) and (4.36) in Chapter 4, that all the components on the right hand

sides of (6.31) and (6.32) are normal densities that can be expressed in terms of ξ2, ξ3, ξ4. It further

follows that each of

pY1,Y2,Y3(y1, y2, y3|j ; θj ).

where θj are defined as above, are normal densities.

Thus, adopting normality assumptions results in a full data model that is in the form of a mixture of

normal densities.

REMARK: Ordinarily, in practice, a data analyst would not, indeed could not, specify a normal

mixture depending on observed dropout patterns as a model for the full data a priori; i.e., prior to

seeing the observed data.
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NCMV: Neighboring case missing values. In this approach, it is assumed instead that

pZ`|Z(`),D(z`|z(`), j) = pZ`|Z(`),D(z`|z(`), ` + 1), ` = j , ... , T , j = 2, ... , T . (6.33)

Here, the assumption is that the densities for each dropout pattern D = j , j = 2, ... , T are the same as

those corresponding to the first available dropout pattern d for which pZ`|Z(`),D(z`|z(`), d) is observable;

namely, D = ` + 1.

As with CCMV, rather than posit models directly for pZ`|Z(`),D(z`|z(`), ` + 1) for each j and ` = j , ... , T ,

models compatible with those in (6.21) can be deduced.

We demonstrate in the example.

EXAMPLE, (ii), NCMV: From (6.33), it is assumed that

pY3|Y2,Y1,D(y3|y2, y1, 2) = pY3|Y2,Y1,D(y3|y2, y1, 3) = pY3|Y2,Y1,D(y3|y2, y1, 4),

pY2|Y1,D(y2|y1, 2) = pY2|Y1,D(y2|y1, 3).

We thus require models for

pY3|Y2,Y1,D(y3|y2, y1, 4), pY2|Y1,D(y2|y1, 3). (6.34)

As for CCMV, from (6.22), we have already posited a model pY1,Y2,Y3|D(y1, y2, y3|4; ξ4); thus, by the

same calculations as in (6.29) and (6.30), a model

pY3|Y2,Y1,D(y3|y2, y1, 4; ξ4)

is induced.

To deduce a model for the second term in (6.34), note that from (6.22), we have already posited a

model

pY1,Y2,D(y1, y2|3; ξ3).

By entirely similar calculations, we thus have

pY1|D(y1|3; ξ3) =
∫

pY1,Y2(y1, y2|3; ξ3) dy2,

pY2|Y1,D(y2|y1, 3; ξ3) =
pY1,Y2|D(y1, y2|3; ξ3)

pY1|D(y1|3; ξ3)
.

Thus, as with CCMV, the required models in (6.34) are automatically induced by those in (6.22).
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Again, from (6.20) and (6.23), models for pZ |D(z|j), j = 2, 3, 4, are thus given by

pY1,Y2,Y3|D(y1, y2, y3|2; ξ2, ξ3, ξ4) = pY1|D(y1|2; ξ2)
{

pY2|Y1,D(y2|y1, 3; ξ3) pY3|Y2,Y1,D(y3|y2, y1, 4; ξ4)
}

,

pY1,Y2,Y3|D(y1, y2, y3|3; ξ3, ξ4) = pY1,Y2|D(y1, y2|3; ξ3)pY3|Y2,Y1,D(y3|y2, y1, 4; ξ4).

and pY1,Y2,Y3|D(y1, y2, y3|4; ξ4). Thus,

θ2 = (ξT
2 , ξT

3 , ξT
4 )T , θ3 = (ξT

3 , ξT
4 )T , θ4 = ξ4,

and θ = (ξT
2 , ξT

3 , ξT
4 )T .

As with CCMV, substituting the above expressions in (6.19) yields resulting full data mixture model.

Moreover, assuming that the densities in (6.22) are normal would lead to a similar normal mixture

model for the full data.

REMARK: Under each of the CCMV and NCMV assumptions, it is possible, by substituting in (6.15),

to derive the dropout mechanism pD|Z (j , z) induced by these assumptions. Via such calculations,

it can be shown (try it) that neither CCMV nor NCMV results in an induced mechanism that is MAR

in general.

GENERAL FORMULATION: The CCMV and NCMV approaches to identifiability are special cases

of the following general formulation.

Write the required nonidentifable conditional densities in (6.24), namely

pZ`|Z(`),D(z(`), j), ` = j , ... , T , j = 2, ... , T ,

or, equivalently, ` = 2, ... , T , j = 1, ... , `− 1, as a weighted average of the corresponding conditional

densities across all dropout patterns where that conditional density is identifiable; i.e.,

pZ`|Z(`),D(z(`), j) =
T+1∑

d=`+1

ω`d pZ`|Z(`),D(z(`), d),
T +1∑

d=`+1

ω`d = 1. (6.35)

• CCMV is the special case of (6.35) with

ω`d = 0, d = 1, ... , T ; ω`,T +1 = 1.

• NCMV is the special case of (6.35) with

ω`,`+1 = 1, ω`d = 0, d 6= ` + 1.
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ACMV: Available case missing values. Another special case of (6.35) proposed by Molenberghs

et al. (1998) and referred to by these authors as available case missing values (ACMV), involves a

particular set of non-zero weights ω`d . Recalling that ψj = pr(D = j),

ω`d =
ψd pZ`|Z(`),D(z(`), d)∑T+1

p=`+1 ψp pZ`|Z(`),D(z(`), p)
, d = ` + 1, ... , T + 1. (6.36)

RELATIONSHIP TO MAR: It turns out, as shown by Molenberghs et al. (1998), that taking a pattern

mixture perspective as we have here and achieving identifiability by using the weights (6.36) in (6.35)

is equivalent to making the assumption of MAR; see this article for a detailed proof. Indeed, es-

tablishing equivalence between adopting a pattern mixture model and identifiability assumptions

and MAR was the motivation for the form of the weights in (6.36).

SUMMARY: The foregoing developments demonstrate that implementation of a pattern mixture

model in practice involves development and fitting of a series of models, namely, those in (6.21)

that are identifiable from the observed data and those in (6.24) dictated by the identifiability as-

sumption adopted. Accordingly, implementation can be intensive in practical settings that are more

complex than our simple illustrative example.

6.3 Implementing pattern mixture models

As discussed in Section 16.4 of Molenberghs and Kenward (2007), in general, if one takes a pattern

mixture approach, adopting identifying assumptions such as CCMV, NCMV, or ACMV as discussed

in the previous section, estimators for full data quantities of interest are usually not readily available

but instead must be deduced from the induced full data mixture model. Moreover, there is no

obvious way to derive measures of uncertainty (e.g., standard errors and confidence intervals) for

these quantities.

An approach that has been advocated in the literature to address these issues is to combine the use

of pattern mixture models with multiple imputation. In Section 16.5 of Molenberghs and Kenward

(2007), this general strategy is presented. A summary of the key steps is as follows.
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1. Posit and fit models

pZ(j)|D(z(j)|j ; ξj ), j = 2, ... , T + 1,

in (6.21). These models presumably would be chosen so that estimators for the parameters ξj

and approximate measures of uncertainty for them (e.g., standard errors, asymptotic covariance

matrices) are readily available.

2. Select an identification approach, e.g., CCMV, NCMV, or ACMV.

3. Using this identification approach, determine the conditional densities of the unobserved out-

comes given the observed, that is

pZ(j̄)|Z(j),D(z(j̄)|z(j), j) =
T∏
`=j

pZ`|Z(`),D(z`|z(`), j), j = 2, ... , T . (6.37)

4. Using multiple imputation, based on this formulation, draw multiple imputations for the unob-

served components given the observed and the pattern-specific densities (6.37). It is necessary

to use proper imputation methods; that is, it is also required to make draws from the predictive

distribution of the ξj as well as from the conditional densities on the right hand side of (6.37).

5. Analyze the multiply imputed data sets using a model and method of choice. For example,

one could adopt a selection model or another pattern mixture model or any other model of

interest.

6. Inference is then carried out using the standard multiple imputation approach, with standard

errors obtained via Rubin’s formula.

See Chapter 16 of Molenberghs and Kenward (2007) for a detailed account of use of this strategy in

several applications.

6.4 Discussion

As we have demonstrated in this chapter, inference based on pattern mixture models does not involve

directly making the assumption of a MAR mechanism, as is the case for methods that are based on

a selection model framework. Instead, the pattern mixture approach involves making other types

of (untestable) identifiability assumptions. CCMV and NCMV are two relatively straightforward

approaches to doing this. The ACMV formulation demonstrates that there is an intersection of these
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two very different perspectives on modeling. However, except in this case, in general, the dropout

mechanism that is implied by a pattern mixture model is not transparent.

A prominent feature of pattern mixture models is that quantities associated with the full data distri-

bution, which would be modeled explicitly in a selection model approach, are not readily available

and must be derived from the implied full data model. As shown in (6.16) this model is a mixture

of models for the full data given the observed missing data patterns. In general, this induced model

would not correspond to a full data model that a data analyst might posit explicitly, as the induced

model depends on the probability mass function of possible missing data patterns, which would not

be known a priori.

Molenberghs and Kenward (2007) note that pattern mixture models can yield useful insights in practi-

cal applications and thus can be a valuable complement to the selection-based approaches discussed

in Chapters 3-5. The same can be said in the context of sensitivity analysis, discussed in the next

chapter.
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