
CHAPTER 5 ST 790, MISSING DATA

5 Methods Based on Inverse Probability Weighting Under MAR

The likelihood-based and multiple imputation methods we considered for inference under MAR in

Chapters 3 and 4 are based, either directly or indirectly, on integrating over the distribution of the

missing data. In this chapter, we consider a different class of methods that instead uses directly the

missingness mechanism itself. In EXAMPLE 1 of Section 1.4 of Chapter 1, we introduced the idea

of inverse probability weighting of complete cases, which forms the basis for this general class of

methods.

The use of inverse probability weighting was proposed in the context of surveys in a famous paper

by Horvitz and Thompson (1952). In a landmark paper decades later, Robins, Rotnitzky, and Zhao

(1994) used the theory of semiparametrics to derive the class of all consistent and asymptotically

normal semiparametric estimators for parameters in a semiparametric full data model when data

are MAR and to identify the efficient estimator in the class. It turns out that estimators in this class

can be expressed as solutions to estimating equations that involve inverse probability weighting. A

detailed account of this theory and of these estimators is given in Tsiatis (2006).

From a practical point of view, this theory is the basis for the class of estimators for full data model

parameters using what are often called in the context of missing data problems weighted estimating

equations, or WGEEs. We begin by returning to the simple case of estimation of a single mean as

in EXAMPLE 1 of Section 1.4 to illustrate the fundamental features of weighted estimating equations,

including the notion of double robustness, and then generalize to more complex models.

We continue to assume that MAR holds.

5.1 Inverse probability weighted estimators for a single mean

SIMPLE INVERSE PROBABILITY WEIGHTED ESTIMATORS: Recall the situation in EXAMPLE 1

of Section 1.4, in which the full data are Z = (Z1, Z2) = (Y , V ), where Y is some scalar outcome of

interest, and V is a set of additional variables. The objective is to estimate

µ = E(Y ).

Note that this is a nonparametric (and thus semiparametric) model, as we have specified nothing

about the distribution of Z .
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As noted in Section 1.4, the obvious estimator for µ if we had a sample of full data (Yi , Vi ), i = 1, ... , N,

would be the sample mean of the Yi

µ̂full = N−1
N∑

i=1

Yi .

Note that µ̂full is, equivalently, the solution to the (full data) estimating equation

N∑
i=1

(Yi − µ) = 0. (5.1)

Even though V is available, it is not needed in (5.1).

Now consider the case of missing data. As usual, R = (R1, R2)T . Now suppose as in that example

that V is always observed while Y can be missing, so that the two possible values of R are (1, 1)T and

(0, 1)T . Let C = 1 if R = (1, 1)T and C = 0 if R = (0, 1)T . Thus, the observed data can be summarized

as (C, CY , V ), and a sample of observed data on N individuals can be written (Ci , CiYi , Vi ), i =

1, ... , N.

As in (1.21), if we are willing to assume that missingness of Y depends only on V and not on Y , i.e.,

pr(C = 1|Y , V ) = pr(C = 1|V ) = π(V ), π(v ) > 0 for all v , (5.2)

equivalently, C ⊥⊥ Y |V , and the missingness mechanism is MAR. As demonstrated in Section 1.4,

under these conditions, the complete case estimator, the sample mean of the Yi for the individuals

on whom Y is observed,

µ̂cc =
∑N

i=1 CiYi∑N
i=1 Ci

,

is in general not a consistent estimator for µ.

It is straightforward to see that, equivalently, µ̂cc solves the estimating equation

N∑
i=1

Ci (Yi − µ) = 0. (5.3)

An inverse probability weighted estimator that is consistent can be derived by weighting the com-

plete case estimating equation (5.3). Consider the inverse probability weighted complete case

estimating equation
N∑

i=1

Ci

π(Vi )
(Yi − µ) = 0; (5.4)

(5.4) weights the contribution of each complete case i by the inverse (reciprocal) of π(Vi ).
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Recall from our review of estimating equations in Section 1.5 that, to show that (5.4) leads to a

consistent estimator for µ, it suffices to show that (5.4) is a unbiased estimating equation; i.e., that

the estimating function
C
π(V )

(Y − µ)

satisfies

Eµ

{
C
π(V )

(Y − µ)
}

= 0. (5.5)

To show (5.5), we use the law of iterated conditional expectation as follows:

Eµ

{
C
π(V )

(Y − µ)
}

= Eµ

[
E
{

C
π(V )

(Y − µ)|Y , V
}]

= Eµ

{
E(C|Y , V )
π(V )

(Y − µ)
}

= Eµ

{
π(V )
π(V )

(Y − µ)
}

(5.6)

= Eµ(Y − µ) = 0, (5.7)

where (5.6) follows because

E(C|Y , V ) = pr(C = 1|Y , V ) = pr(C = 1|V ) = π(V )

under MAR, and π(V )/π(V ) = 1 because π(V ) > 0 almost surely leads to (5.7).

REMARKS:

• The estimator solving (5.4) is

µ̂ipw2 =

{
N∑

i=1

Ci

π(Vi )

}−1 N∑
i=1

CiYi

π(Vi )
. (5.8)

Comparing (5.8) to the estimator

µ̂ipw = N−1
N∑

i=1

CiYi

π(Vi )

given in (1.22) shows that they are not the same. The estimator µ̂ipw2 in (5.8) is a weighted

average of the observed Yi and is thus guaranteed to be a value between the minimum and

maximum of these Y values, whereas for µ̂ipw this need not be the case.
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• Both of these estimators treat π(v ) as if it is a known function of v . If missingness is by design,

as for the nutrition study discussed in Chapter 1 in which subjects are selected for a validation

sample according to some known mechanism, then π(v ) would indeed be known.

However, in most situations, π(v ) is not known. Accordingly, to use such inverse probability

weighted estimators in practice, we need to deduce π(v ) based on the data. In particular, we

generally can posit a model for pr(C = 1|V ); for example, a fully parametric model

π(V ;ψ),

depending on a finite-dimensional parameter ψ, say, and estimate ψ from the data. Because C

is binary, a natural approach is to posit a logistic regression model such as

logit{pr(C = 1|V )} = ψ0 + ψT
1 V ,

say, where recall that logit(p) = log{p/(1− p)}.

Using the data (Ci , Vi ), i = 1, ... , N, we can then estimate ψ by maximum likelihood, obtaining

the MLE ψ̂ by maximizing

N∏
i=1

{π(Vi ;ψ)}I(Ci =1){1− π(Vi ;ψ)}I(Ci =0) =
N∏

i=1

{π(Vi ;ψ)}Ci{1− π(Vi ;ψ)}1−Ci . (5.9)

In this case, the inverse probability weight complete case estimator based on (5.8) is given

by

µ̂ipw2 =

{
N∑

i=1

Ci

π(Vi ; ψ̂)

}−1 N∑
i=1

CiYi

π(Vi ; ψ̂)
. (5.10)

• It is also clear from this development that µ̂ipw2 can be an inconsistent estimator if the model

π(v ;ψ) is misspecified ; i.e., if there is no value of ψ for which pr(C = 1|V = v ) = π(v ;ψ).

• Moreover, by construction, inverse probability weighted complete case estimators such as (5.8)

use data only from the complete cases {i : Ci = 1} and disregard data from individuals for

whom Yi is missing. Intuitively, this is likely to result in inefficiency.

AUGMENTED INVERSE PROBABILITY WEIGHTED ESTIMATORS: It turns out, as shown by

Robins et al. (1994), that there is a class of estimators that involves augmenting the simple in-

verse probability weighted complete case estimating equation for µ. Estimators in this class can yield

improved efficiency.
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The optimal estimator for µ within this class is the solution to the estimating equation

N∑
i=1

[
Ci

π(Vi ; ψ̂)
(Yi − µ)− Ci − π(Vi ; ψ̂)

π(Vi ; ψ̂)
E{(Yi − µ)|Vi}

]
= 0,

which, after some algebra, can be written as

N∑
i=1

{
CiYi

π(Vi ; ψ̂)
− Ci − π(Vi ; ψ̂)

π(Vi ; ψ̂)
E(Yi |Vi )− µ

}
= 0, (5.11)

and leads to the estimator

µ̂ = N−1
N∑

i=1

{
CiYi

π(Vi ; ψ̂)
− Ci − π(Vi ; ψ̂)

π(Vi ; ψ̂)
E(Yi |Vi )

}
.

In (5.11) and consequently the expression for µ̂, the conditional expectation E(Y |V ), the regression

of Y on V , is not known. Accordingly, to implement (5.11), E(Y |V ) must be modeled and fitted based

on the data. Because of MAR, we have

C ⊥⊥ Y |V ,

from which it follows that

E(Y |V ) = E(Y |V , C = 1).

That is, the conditional expectation of Y given V is the same as that among individuals on whom Y

is observed. Thus, we can base positing and fitting a model for E(Y |V = v ),

m(v ; ξ),

say, involving a finite-dimensional parameter ξ, on the complete cases {i : Ci = 1}. Specifically, if Y

is continuous, for example, we might derive an estimator ξ̂ for ξ by OLS, solving in ξ

N∑
i=1

Ci
∂

∂ξ
{m(Vi ; ξ)}{Yi −m(Vi ; ξ)} = 0, (5.12)

the OLS estimating equation based on the complete cases.

Substituting in (5.11), the resulting augmented inverse probability weighted estimator for µ is

µ̂aipw = N−1
N∑

i=1

{
CiYi

π(Vi ; ψ̂)
− Ci − π(Vi ; ψ̂)

π(Vi ; ψ̂)
m(Vi ; ξ̂)

}
. (5.13)

It can be shown that µ̂aipw in (5.13) relatively more efficient than the simple inverse probability

weighted estimator (5.10). Moreover, it also has the property of double robustness.
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DOUBLE ROBUSTNESS: It can be shown that the estimator µ̂aipw in (5.13) is a consistent estimator

for µ if EITHER

• the model π(v ;ψ) for pr(C = 1|V = v ) is correctly specified, OR

• The model m(v ; ξ) for E(Y |V = 1) is correctly specified

(or both). This property is referred to as double robustness, and the estimator µ̂aipw is said to be

doubly robust because its consistency is robust to misspecification of either of these models.

A heuristic demonstration of this double robustness property is as follows. Under regularity conditions,

µ̂aipw in (5.13) converges in probability to

E
{

CY
π(V ;ψ∗)

− C − π(V ;ψ∗)
π(V ;ψ∗)

m(V ; ξ∗)
}

, (5.14)

where ψ∗ and ξ∗ are the limits in probability of ψ̂ and ξ̂. Adding and subtracting common terms in

(5.14), (5.14) can be written as

E
[
Y +

{
C − π(V ;ψ∗)
π(V ;ψ∗)

}
{Y −m(V ; ξ∗)}

]
= µ + E

[{
C − π(V ;ψ∗)
π(V ;ψ∗)

}
{Y −m(V ; ξ∗)}

]
.

Consequently, µ̂aipw is a consistent estimator for µ if we can show that

E
[{

C − π(V ;ψ∗)
π(V ;ψ∗)

}
{Y −m(V ; ξ∗)}

]
= 0. (5.15)

Using iterated conditional (on V ) expectation, (5.15) can be written as

E
(

E
[{

C − π(V ;ψ∗)
π(V ;ψ∗)

}
{Y −m(V ; ξ∗)}

∣∣∣∣V])
= E

[
E
{

C − π(V ;ψ∗)
π(V ;ψ∗)

∣∣∣∣V}E {Y −m(V ; ξ∗)|V}
]

, (5.16)

where (5.16) is a consequence of MAR, so that C ⊥⊥ Y |V .

Consider two cases:

(a) π(v ;ψ) is correctly specified. Then ψ̂ converges in probability to the true value of ψ, so that

π(V ;ψ∗) = pr(C = 1|V ).

Under this condition,

E
{

C − π(V ;ψ∗)
π(V ;ψ∗)

∣∣∣∣V} = E
{

E(C|V )− pr(C = 1|V )
pr(C = 1|V )

}
= 0

using E(C|V ) = pr(C = 1|V ), and (5.15) follows.
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(b) m(v ; ξ) is correctly specified. Then ξ̂ converges in probability to the true value of ξ, and thus

m(V ; ξ∗) = E(Y |V ).

In this case, E {Y −m(V ; ξ∗)|V} = E {Y − E(Y |V )|V} = 0, and (5.15) follows.

The results in (a) and (b) thus confirm the double robustness property.

5.2 Inverse probability weighted estimators in regression

Recall EXAMPLE 2 of Section 1.4 of Chapter 1, involving missingness in regression analysis. We

now consider how the foregoing principles can be used to derive inverse probability weighted and

doubly robust, augmented inverse probability weighted estimators for the regression parameter in a

regression model of interest.

Suppose that the full data Z = (Y , X , V ), where Y is a scalar outcome, and X is a vector of covari-

ates. As in the previous example, V is a set of additional, auxiliary variables. Interest focuses on a

regression model for E(Y |X = x), given by

µ(x ;β).

Suppose that this model is correctly specified. This is a semiparametric model, as the distribution

of Z beyond the form of E(Y |X ) is unspecified.

Assume that (X , V ) are always observed, but that Y can be missing, and, as in the previous exam-

ple, let C = 1 if Y is observed and C = 0 if it is missing. The observed data are thus (C, CY , X , V ),

and the full sample of observed data can be written as (Ci , CiYi , Xi , Vi ), i = 1, ... , N.

Here, although the variables in V are not involved in the model of interest for E(Y |X = x), suppose

they are needed to make the assumption of MAR tenable. Specifically, assume that

pr(C = 1|Y , X , V ) = pr(C = 1|X , V ) = π(X , V ), (5.17)

say. That is, we are unable to assume that

pr(C = 1|Y , X ) = pr(C = 1|X ),

which would have allowed us to use the usual, complete case estimator for β as described in Sec-

tion 1.4. However, the availability of V makes the MAR assumption (5.17) viable.
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Suppose that Y is continuous. Recall from (1.27) that the complete case OLS estimator for β is the

solution to the estimating equation

N∑
i=1

Ci
∂

∂β
{µ(Xi ;β)}{Yi − µ(Xi ;β)} = 0. (5.18)

We can examine the consistency of the complete case estimator under these conditions by looking

at the estimating function in (5.18). Specifically, using (5.17),

Eβ

[
C
∂

∂β
{µ(X ;β)}{Y − µ(X ;β)}

]
= Eβ

(
Eβ

[
C
∂

∂β
{µ(X ;β)}{Y − µ(X ;β)}

∣∣∣∣Y , X , V
])

= Eβ

[
π(X , V )

∂

∂β
{µ(X ;β)}{Y − µ(X ;β)}

]
, (5.19)

which is not equal to zero in general, so that (5.18) is not an unbiased estimating equation.

However, using the same ideas as for the case of a single mean in Section 5.1, consider the inverse

probability weighted complete case estimating equation

N∑
i=1

Ci

π(Xi , Vi )
∂

∂β
{µ(Xi ;β)}{Yi − µ(Xi ;β)} = 0. (5.20)

Using a conditioning argument similar to that leading to (5.19) (try it), we have

Eβ

[
C

π(X , V )
∂

∂β
{µ(X ;β)}{Y − µ(X ;β)}

]
= Eβ

[
∂

∂β
{µ(X ;β)}{Y − µ(X ;β)}

]
= Eβ

(
Eβ

[
∂

∂β
{µ(X ;β)}{Y − µ(X ;β)}

∣∣∣∣X])
= Eβ

[
∂

∂β
{µ(X ;β)}{E(Y |X )− µ(X ;β)}

]
= 0,

as the model µ(X ;β) for E(Y |X ) is correctly specified. Thus, the inverse probability weighted com-

plete case estimator for β solving (5.20) is consistent for β.

To implement these ideas in practice, as in the previous example, because π(x , v ) = pr(C = 1|X =

x , V = v ) is not known, we must posit a model for it and fit it using the data. As in Section 5.1, a

binary regression model

π(x , v ;ψ)

can be specified; e.g., a logistic regression model.
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Analogous to (5.9), ψ can be estimated by the MLE ψ̂ maximizing

N∏
i=1

{π(Xi , Vi ;ψ)}I(Ci =1){1− π(Xi , Vi ;ψ)}I(Ci =0) =
N∏

i=1

{π(Xi , Vi ;ψ)}Ci{1− π(Xi , Vi ;ψ)}1−Ci , (5.21)

using the data (Ci , Xi , Vi ), i = 1, ... , N. The fitted π(Xi , Vi ; ψ̂) can then be substituted in (5.20), and β

can be estimated by solving

N∑
i=1

Ci

π(Xi , Vi ; ψ̂)

∂

∂β
{µ(Xi ;β)}{Yi − µ(Xi ;β)} = 0.

A doubly robust, augmented inverse probability weighted complete case estimator for β can

also be derived by considering the estimating equation

N∑
i=1

(
Ci

π(Xi , Vi ; ψ̂)

∂

∂β
{µ(Xi ;β)}{Yi − µ(Xi ;β)}

−

{
Ci − π(Xi , Vi ; ψ̂)

π(Xi , Vi ; ψ̂)

}
E
[
∂

∂β
{µ(Xi ;β)}{Yi − µ(Xi ;β)}|Xi , Vi

])
= 0.

This equation is equal to

N∑
i=1

[
Ci

π(Xi , Vi ; ψ̂)

∂

∂β
{µ(Xi ;β)}{Yi − µ(Xi ;β)}

−

{
Ci − π(Xi , Vi ; ψ̂)

π(Xi , Vi ; ψ̂)

}
∂

∂β
{µ(Xi ;β)}{E(Yi |Xi , Vi )− µ(Xi ;β)}

]
= 0. (5.22)

Note that, in (5.22), E(Y |X , V ) is not known. As in the previous example, we posit a model

m(x , v ; ξ)

for E(Y |X = x , V = v ). By MAR, we have

E(Y |X , V ) = E(Y |X , V , C = 1),

so that this model can be developed and fitted using the data on the complete cases only, {i : Ci =

1}.

For example, analogous to (5.12), an estimator ξ̂ for ξ can be obtained by solving the OLS estimating

equation
N∑

i=1

Ci
∂

∂ξ
{m(Xi , Vi ; ξ)}{Yi −m(Xi , Vi ; ξ)} = 0 (5.23)

using the data on the complete cases.
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Substituting m(Xi , Vi ; ξ̂) in (5.22) for each i , we obtain the estimating equation to be solved to ob-

tain the doubly robust augmented inverse probability weighted complete case estimator for β,

namely

N∑
i=1

[
Ci

π(Xi , Vi ; ψ̂)

∂

∂β
{µ(Xi ;β)}{Yi − µ(Xi ;β)}

−

{
Ci − π(Xi , Vi ; ψ̂)

π(Xi , Vi ; ψ̂)

}
∂

∂β
{µ(Xi ;β)}{m(Xi , Vi ; ξ̂)− µ(Xi ;β)}

]
= 0. (5.24)

REMARK: An issue that arises in (5.24) is the compatibility of the models m(x , v ; ξ) for E(Y |X =

x , V = v ) and µ(x ;β) for E(Y |X = x). That is, for these models to be compatible, it must be that

µ(X ;β) = E(Y |X ) = E{E(Y |X , V )|X} = E{m(X , V ; ξ)|X}.

One way to develop such compatible models is to assume that the centered residual {Y − µ(X ;β)}

and the centered V , {V −E(V |X )}, are, conditional on X , multivariate normal with mean zero and

covariance matrix that can depend on X .

To demonstrate, for simplicity, assume that the conditional covariance matrix is independent of X .

In this case,  Y − µ(X ;β)

V − E(V |X )

∣∣∣∣∣∣X
 ∼ N

0,

 ΣYY ΣYV

ΣVY ΣVV

 ,

and

E(Y |X , V ) = µ(X , ;β) + ΣVYΣ
−1
VV{V − E(V |X )}.

If we are also willing to assume that E(V |X ) is linear in X for all V , then

E(Y |X , V ) = µ(X , ;β) + ξ0 + ξT
1 Xi + ξT

2 Vi .

We can then estimate β and ξ simultaneously by solving jointly the estimating equations

N∑
i=1

[
Ci

π(Xi , Vi ; ψ̂)

∂

∂β
{µ(Xi ;β)}{Yi − µ(Xi ;β)}

−

{
Ci − π(Xi , Vi ; ψ̂)

π(Xi , Vi ; ψ̂)

}
∂

∂β
{µ(Xi ;β)}{ξ0 + ξT

1 Xi + ξT
2 Vi}

]
= 0

and

N∑
i=1

Ci


1

Xi

Vi

 {Yi − µ(Xi ;β)− ξ0 + ξT
1 Xi + ξT

2 Vi} = 0.
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That these models are compatible is clear because we could generate data as follows. Choose X

from an arbitrary distribution. Take W ∼ N (0, I); i.e., generate the components of W as standard

normal. Then  Y

V

 =

 µ(X ;β)

E(V |X )

 + Σ−1/2W .

(Y , X , V ) generated in this fashion guarantee that

E(Y |X , V ) = µ(X ;β) + ΣVYΣ
−1
VV{V − E(V |X )},

and E(Y |X ) = µ(X ;β).

5.3 Weighted generalized estimating equations for longitudinal data subject to dropout

POPULATION AVERAGE MODELS FOR LONGITUDINAL DATA: For the remainder of this chapter,

we consider a more general formulation of the situation of longitudinal regression modeling and

analysis discussed in EXAMPLE 3 of Section 1.4 of Chapter 1. This framework is widely used for

inference from longitudinal data under a semiparametric model.

Suppose that longitudinal data are to be collected at T time points t1 < · · · < tT , where t1 represents

baseline. Specifically, let Yj be the scalar outcome of interest, Xj be a vector of covariates, and Vj be

a vector of additional variables recorded at time tj , j = 1, ... , T . The full data are then

Z = {(Y1, X1, V1), ... , (YT , XT , VT )}.

Letting Y = (Y1, ... , YT )T , the (T × 1) outcome vector, and collecting all T covariate vectors as

X T = {X1, ... , XT},

in its most general form, the regression model of interest is

E(Y |X T ).

We consider a model of the form

E(Y |X T = xT ) = µ(xT ;β) =


µ1(xT ;β)

...

µT (xT ;β)

 . (5.25)

In (5.25), µj (xT ;β) is a model for E(Yj |X T = xT ), j = 1, ... , T , and accordingly depends on time tj as

well as the (p × 1) parameter β.

As in the regression situation in Section 5.2, this is a semiparametric model, as the distribution of Z

is left unspecified beyond the form of E(Y |X T ).
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Given a sample of data from N individuals, the goal is to estimate β in (5.25).

Models for the expectation of an outcome vector given covariates, as in (5.25), are referred to as

population average or population averaged models, as they describe average outcome for all indi-

viduals in the population of interest having a given covariate value and thus the relationship between

average outcome and covariates in the population.

Under the model in (5.25), the expected value of Yj given the entire collection of covariates X T over

all T time points is taken to potentially depend on all of these covariates for each j = 1, ... , T . Thus,

under this model, the mean outcome at time j can depend on covariates collected in the past (prior

to time j), at time j , or in the future (after time j).

Although in principle possible, adoption of a model that allows mean outcome to depend on future

covariates is rare in practice, as it is difficult to conceive a scientific rationale for such dependence.

A special case that is more intuitive and justifiable in practice is to take each component µj (xT ;β)

to depend only on the covariates available through time tj . That is, the model for E(Yj |X T = xT )

depends on xT only through x1, ... , xj .

In many practical situations, the covariates collected over t1, ... , tT are exogenous. That is, the

covariates are such that their values can be determined external to the evolution of information on

the individuals being followed. Baseline covariates are a key example of exogenous covariates; the

values of baseline covariates are available through all T time points.

If all covariates are exogenous, then write X , with no subscript, to denote the collection of these

covariates. Interest then focuses on a model for E(Y |X ) , and (5.25) simplifies to

E(Y |X = x) = µ(x ;β) =


µ1(x ;β)

...

µT (x ;β)

 . (5.26)

In a model of the form in (5.26), the components µj (x ;β) depend on x and tj , so can involve, for

example, main effects in the components of x and time and interactions thereof, e.g.,

µj (x ;β) = β0 + β1tj + βT
2 x + (βT

3 x)tj .

A comprehensive account of issues associated with such population average modeling of full longi-

tudinal data and the implications of different modeling assumptions for the properties of estimators

for β obtained by solving GEEs is beyond our scope here. We remark that one must be very careful

when adopting models of the general form in (5.25) that involve endogenous covariates that change

over time; e.g., see the classic paper by Pepe and Anderson (1994).

134



CHAPTER 5 ST 790, MISSING DATA

In the remainder of this chapter, we focus on situations in which the covariates are exogenous, and

we write the full data as

Z = {(Y1, V1), ... , (YT , VT ), X}. (5.27)

Models of interest are of the form in (5.26), and the goal is to estimate β. Note that, because X is

exogenous, its value is known throughout all T time points, and thus is available even on individuals

who drop out, as we discuss shortly.

GENERALIZED ESTIMATING EQUATION (GEE) FOR FULL DATA: If a sample of full data Zi , i =

1, ... , N, is available, then it is well known that the optimal GEE to be solved to estimate β is given by

N∑
i=1

DT (Xi ;β)V−1(Xi ;β)


Yi1 − µ1(Xi ;β)

...

YiT − µT (Xi ;β)

 = 0, (5.28)

where

D(x ;β) =
∂

∂βT {µ(x ;β)}

is the (T×p) matrix of partial derivatives of the T elements of µ(x ;β) with respect to the p components

of β; and V(x ;β) is a (T × T ) working covariance matrix, a model for var(Y |X = x). Ordinarily, the

working covariance matrix also depends on additional covariance parameters that are estimated

from the data by solving additional estimating or moment equations. For brevity, we suppress this

in the notation, but be aware that this is a standard, additional feature of fitting population average

models like that in (5.26). The GEE (5.28) can be seen to be a generalization of (1.32) discussed in

Section 1.4.

From the review of estimating equations in Section 1.5, (5.28) has associated estimating function

M(Z ;β) = DT (X ;β)V−1(X ;β)


Y1 − µ1(X ;β)

...

YT − µT (X ;β)

 =
T∑

j=1

Aj (X ){Yj − µj (X ;β)}, (5.29)

where Aj (x), j = 1, ... , T , is the (p × 1) vector such that the (p × T ) matrix with columns Aj (x)

{A1(x), ... ,AT (x)} = DT (x ;β)V−1(x ;β).

As discussed shortly, among the class of estimating functions having the form of the rightmost ex-

pression in (5.29), this choice of theAj (x) is optimal ; other choices of theAj (x) would lead to different

(and not optimal) GEEs. M(Z ;β) in (5.29) is easily seen to satisfy Eβ{M(Z ;β)} = 0, so that (5.28) is

an unbiased estimating equation.
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DROPOUT: The foregoing development demonstrates how inference proceeds when a sample of full

data is available. We now consider inference on β in the model (5.26) when some individuals drop

out, so that the missingness induced is monotone.

Because X is exogenous, it is always observed for all individuals. Under our convention, if an

individual drops out at time tj+1, s/he is last seen at time tj , and we assume in this case that we

observe (Y1, V1), ... , (Yj , Vj ) but that (Yj+1, Vj+1), ... , (YT , VT ) are missing. As usual, then, let

R = (R1, ... , RT , RT +1)T ,

corresponding to the T + 1 components of Z in (5.27). Clearly, RT +1 = 1 for all individuals. In addition,

we assume that all individuals are observed at baseline, so that R1 = 1.

With dropout, if Rj = 1, then this implies that R2, ... , Rj−1 also all are equal to 1. Define as usual

D = 1 +
T∑

j=1

Rj ,

so that D = j + 1 implies that the individual is last seen at tj . Because R1 = 1 always, D thus takes on

values 2, ... , T + 1, where D = T + 1 corresponds to the situation where full data are observed.

As in Section 2.3 of Chapter 2, we describe the stochastic dropout process using the cause-specific

hazard function of dropout,

λj (Z ) = pr(D = j |D ≥ j , Z ), j = 2, ... , T . (5.30)

Note that λ1(Z ) = pr(D = 1|D ≥ 1, Z ) = 0 because (Y1, V1) are always observed, and λT+1(Z ) =

pr(D = T + 1|D ≥ T + 1, Z ) = 1 by construction. We then can deduce that (verify)

πj (Z ) = pr(Rj = 1|Z ) =
j∏
`=1

{1− λ`(Z )}, j = 2, ... , T (5.31)

and

pr(D = j + 1|Z ) = πj (Z )λj+1(Z ), j = 1, ... , T . (5.32)

Note that, because all individuals are observed at baseline, π1(Z ) = pr(R1 = 1|Z ) = pr(R1 = 1) = 1.

MAR ASSUMPTION: We assume that the dropout mechanism is MAR. It is convenient to define

Hj = {X , (Y1, V1), ... , (Yj , Vj )}, j = 1, ... , T ,

the history available through time tj .
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MAR implies that the cause-specific hazard of dropout (5.30) can be written as

λj (Z ) = pr(D = j |D ≥ j , Z ) = pr(D = j |D ≥ j , Hj−1) = λj (Hj−1), j = 2, ... , T ; (5.33)

that is, the hazard of dropping out at time tj (i.e., last being seen at time tj−1) depends only on the

observed history through time tj−1. Likewise, (5.31) and (5.32) become

πj (Z ) = πj (Hj−1) = pr(Rj = 1|Hj−1) =
j∏
`=1

{1− λ`(H`−1)}, j = 2, ... , T , (5.34)

and

pr(D = j + 1|Z ) = pr(D = j + 1|Hj ) = πj (Hj−1)λj+1(Hj ), j = 1, ... , T , (5.35)

By convention in formulæ to follow, when j = 1, πj (Hj−1) = π1 = 1. We will use this and (5.33), (5.34),

and (5.35) in the sequel.

AUXILIARY VARIABLES: As in Sections 5.1 and 5.2, although the auxiliary variables Vj , j = 1, ... , T ,

are not relevant to the longitudinal regression model µ(x ;β) of interest, as the foregoing development

shows, they may be implicated in the dropout mechanism and thus are necessary to render the

assumption of MAR plausible.

WEIGHTED GENERALIZED ESTIMATING EQUATIONS (WGEEs) UNDER MAR DROPOUT: We

now discuss how the usual full data GEE (5.28) can be modified in the case of dropout to lead to

estimators for β based on a sample of observed data subject to dropout. Approaches include

(i) Inverse probability weighting at the occasion level. This approach was first proposed by

Robins, Rotnitzky, and Zhao (1995) and involves using weights specific to each time point.

These methods are applicable only in the situation we discuss here, where there are only ex-

ogenous covariates, as in (5.26).

(ii) Inverse probability weighting at the subject level. This approach was proposed by Fitzmau-

rice, Molenberghs, and Lipsitz (1995) and is applicable more generally to models of the form

(5.25) that depend on xT only through x1, ... , xj .

(iii) Doubly robust methods.

We discuss (ii) first, followed by (i), and defer (iii) to the next section.
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In each case, we discuss the associated WGEEs by presenting their corresponding estimating func-

tions, which depend on the observed data. Note that the observed data on an individual, (R, Z(R)),

can be expressed as R (equivalently, D), and if D = j + 1, Hj . The estimating functions are expressed

in terms of (5.33), (5.34), and (5.35) as if these functions were known. We discuss modeling and

fitting of the dropout hazards at the end of this section.

INVERSE PROBABILITY WEIGHTING AT THE SUBJECT LEVEL: The general form of the estimat-

ing function involving subject level weighting is given by

T∑
j=1

{
I(D = j + 1)

πj (Hj−1)λj+1(Hj )

}[
Gj1(X ){Y1 − µ1(X ;β)} + · · · + Gjj (X ){Yj − µj (X ;β)}

]
, (5.36)

where Gj`(x), ` = 1, ... , j , j = 1, ... , T , are arbitrary (p×1) functions of x . Thus, note that the estimating

function at the j th level, say, has coefficients in x that vary by j . Assuming that the dropout model is

correctly specified, it is straightforward to show that (5.36) is an unbiased estimating function by

first conditioning on the full data and then on X (try it).

For individual i for whom Di = j + 1 for fixed j = 1, ... , T , his/her contribution to the WGEE is{
I(Di = j + 1)

πj (Hi ,j−1)λj+1(i , Hj )

}[
Gj1(Xi ){Yi1 − µ1(Xi ;β)} + · · · + Gjj (Xi ){Yij − µj (Xi ;β)}

]
corresponding to this j . Thus, for each individual, there is a single, subject level weight,{

I(D = j + 1)
πj (Hj−1)λj+1(Hj )

}
applied to the linear combination of his/her {Y` − µ`(X ;β)}, ` = 1, ... , j .

Fitzmaurice et al. (1995) suggest taking the (p × j) matrix

{Gj1(X ), ... , Gjj (X )} = DT
j (X ;β)V−1

j (X ;β), (5.37)

where, as in Section 1.4, DT
j (x ;β) (p × j) and Vj (x ;β) (j × j) are the corresponding submatrices of

DT (x ;β) (p×T ) and V(x ;β) (T ×T ). Recall from EXAMPLE 3 in Section 1.4 that (5.37) corresponds

to what would be used in a naive analysis based on the available data.

Thus, the WGEE based on the estimating function (5.37) using this specification can be interpreted

as a weighted (with a single, scalar weight for each individual) version of the estimating equations

that would be used for the naive, available data analysis, namely (compare to (1.33))

N∑
i=1


T∑

j=1

wijDT
j (Xi ;β)V−1

j (Xi ;β)


Yi1 − µ1(Xi ;β)

...

Yij − µj (Xi ;β)


 = 0, wij =

I(Di = j + 1)
πj (Hi ,j−1)λj+1(i , Hj )

.
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INVERSE PROBABILITY WEIGHTING AT THE OCCASION LEVEL: The general form of the esti-

mating function involving occasion-specific weighting is

T∑
j=1

Rj

πj (Hj−1)
Bj (X ){Yj − µj (X ;β)}, (5.38)

where B1(x), ... , BT (x) are arbitrary (p × 1) functions of x . That (5.38) is an unbiased estimating

function can also be shown by first conditioning on the full data and then on X (try it).

For an individual i for whom Di = j + 1 for fixed j = 1, ... , T , note that Ri1 = · · · = Rij = 1, with Ri ,j+1 = 0

henceforth. Thus, in contrast to (5.36), for such an individual, his/her contribution to the WGEE is,

from (5.38),

Ri1

π1
B1(Xi ){Yi1 − µ1(Xi ;β)} +

Ri2

π2(Hi1)
B2(Xi ){Yi2 − µ2(Xi ;β)} + · · · +

Rij

πj (Hi ,j−1)
Bj (Xi ){Yij − µj (Xi ;β)}.

This demonstrates that (5.38) involves separate, occasion-level weighting of each component of

individual i ’s contribution to the estimating equation, where each component and its corresponding

weight is specific to time (occasion) tj for all tj at which i has not yet dropped out.

Robins et al. (1995) suggest taking the (p × T ) matrix

{B1(X ), ... , BT (X )} = DT (X ;β)V−1(X ;β). (5.39)

This is, of course, the choice corresponding to the optimal, full data GEE. Thus, the WGEE corre-

sponding to the estimating function (5.38) with specification (5.39) can be interpreted as a weighted

version of (5.28), namely

N∑
i=1

DT (Xi ;β)V−1(Xi ;β)Wi


Yi1 − µ1(Xi ;β)

...

YiT − µT (Xi ;β)

 = 0,

whereWi is the (T × T ) diagonal weight matrix with diagonal elements

Ri1

π1
,

Ri2

π2(Hi1)
, ... ,

RiT

πT (Hi ,T−1)
.

SOFTWARE: The SAS procedure proc gee in SAS/STAT 13.2 implements both the subject level and

occasion level weighted methods using (5.37) for the former and (5.39) for the latter. The weighting

method is chosen and the hazard model is specified through the missmodel statement. There is an

R package, CRTgeeDR, that implements an augmented version of occasion-level weighting.
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SEMIPARAMETRIC THEORY PERSPECTIVE: We can place the above approaches in the context

of the implications of semiparametric theory.

With full data, semiparametric theory shows that the class of all estimating functions leading to

consistent and asymptotically normal estimators for β in the (semiparametric) model (5.26) is

T∑
j=1

Aj (X ){Yj − µj (X ;β)}

for arbitrary (p×1) Aj (x), j = 1, ... , T . As noted in (5.29), the optimal choice of the Aj (x), that leading

to the estimator for β with smallest asymptotic variance among all in this class, is such that the

(p × T ) matrix {A1(x), ... ,AT (x)} = DT (x ;β)V−1(x ;β).

When we have observed data that involve MAR monotone dropout, semiparametric theory can like-

wise be used to derive the class of all estimating functions leading to consistent and asymptotically

normal estimators for β based on the observed data. These estimating functions turn out to have

the augmented inverse probability weighted complete case form

RT

πT (HT−1)

T∑
j=1

Aj (X ){Yj − µj (X ;β)} +
T−1∑
j=1

{
Rj

πj (Hj−1)
−

Rj+1

πj+1(Hj )

}
fj (Hj ), (5.40)

where fj (Hj ), j = 1, ... , T − 1, are arbitrary (p × 1) functions of the histories Hj ; and Aj (X ), j = 1, ... , T ,

are arbitrary (p × 1) functions of X . Showing that (5.40) is an unbiased estimating function is

straightforward using conditioning arguments (try it).

We now demonstrate that the estimating functions for the subject level and occasion level inverse

weighting approaches in (5.36) and (5.38) are special cases of (5.40) .

SUBJECT LEVEL: Consider the subject level estimating function (5.36). It is straightforward to de-

duce that

I(D = j + 1) = Rj − Rj+1;

thus, (5.36) can be written as

RT

πT (HT−1)

[
GT1(X ){Y1 − µ1(X ;β)} + · · · + GTT (X ){YT − µT (X ;β)}

]
+

T−1∑
j=1

Rj − Rj+1

πj (Hj−1)λj+1(Hj )

[
Gj1(X ){Y1 − µ1(X ;β)} + · · · + Gjj (X ){Yj − µj (X ;β)}

]
, (5.41)

We now recursively relate (5.40) to (5.41).
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Note first that
R1

π1
f1(H1) =

R1

π1λ2(H1)
G11(X ){Y1 − µ1(X ;β)},

which implies that

f1(H1) =
G11(X ){Y1 − µ1(X ;β)}

λ2(H1)
.

Adopting the shorthand notation

Gj` = Gj`(X ){Y` − µ`(X ;β)},

πj = πj (Hj−1), and λj = λj (Hj−1), we then have

R2

π2
{f2(H2)− f1(H1)} =

R2

π2

{
G21 + G22

λ3
−
(

1− λ2

λ2

)
G11

}
,

and thus

f2(H2) =
G21 + G22

λ3
+ G11 −

G11

λ2
+
G11

λ2
=
G21 + G22

λ3
+ G11.

Next,
R3

π3
{f3(H3)− f2(H2)} =

R3

π3

{
G31 + G32 + G33

λ4
−
(

1− λ3

λ3

)
(G21 + G22)

}
,

so that, solving for f3(H3),

f3(H3) =
G31 + G32 + G33

λ4
+ (G11 + G21) + G22.

Continuing with this recursion, we have for j = 1, ... , T − 1,

fj (Hj ) =
Gj1(X ){Y1 − µ1(X ;β)} + · · · + Gjj (X ){Yj − µj (X ;β)}

λj+1(Hj )
+ {G11(X ) + · · · + Gj−1,1(X )}{Y1 − µ1(X ;β)}

+ {G22(X ) + · · · + Gj−1,2(X )}{Y2 − µ2(X ;β)}
...

+ Gj−1,j−1(X ){Yj − µj (X ;β)},

and

A1(X ) = G11(X ) + · · · + GT1(X )

A2(X ) = G22(X ) + · · · + GT2(X )
...

AT (X ) = GTT (X ).
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OCCASION LEVEL: Consider the occasion level estimating function (5.38). Here, it is straightforward

to deduce that (try it) this is a special case of (5.40), with

f1(H1) = B1(X ){Y1 − µ1(X ;β)}
...

fj (Hj ) = B1(X ){Y1 − µ1(X ;β)} + · · · + Bj (X ){Yj − µj (X ;β)},

j = 2, ... , T − 1, and Aj (X ) = Bj (X ), j = 1, ... , T .

ESTIMATING THE DROPOUT HAZARDS: In practice, of course, the dropout hazards

λj (Hj−1) = pr(D = j |D ≥ j , Hj−1), j = 2, ... , T ,

(5.33), which determine

πj (Hj−1) =
j∏
`=1

{1− λ`(H`−1)}, j = 2, ... , T ,

in (5.34), are not known. We now discuss how these hazards can be modeled and fitted based on

the observed data. The resulting fitted models can then be substituted in (5.36), (5.38), or, indeed,

any estimating function in the class (5.40).

Suppose we posit models

λj (Hj−1;ψ)

for the λj (Hj−1), j = 2, ... , T , in terms of a vector of parameters ψ. From (5.35) and above, this implies

models for pr(D = j |Z ) = pr(D = j |Hj−1) of the form

πj−1(Hj−2;ψ)λj (Hj−1;ψ) =
j−1∏
`=1

{1− λ`(H`−1;ψ)}λj (Hj−1;ψ),

j = 2, ... , T − 1. Then the likelihood for ψ based on a sample of observed data can be written as

N∏
i=1

T+1∏
j=2

 j−1∏
`=1

{1− λ`(Hi ,`−1;ψ)}λj (Hi ,j−1;ψ)

I(Di =j)

. (5.42)

Rearranging terms, it can be shown (verify) that the likelihood (5.42) can be written as

T∏
j=2

∏
i :Ri ,j−1=1

{λj (Hi ,j−1;ψ)}I(Di =j){1− λj (Hi ,j−1;ψ)}I(Di>j),

where in fact I((D > j) = I(Rj = 1).
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Suppose we adopt a logistic model for each λj (Hj−1;ψ); i.e.,

λj (Hj−1;ψ) =
exp{αj (Hj−1;ψ)}

1 + exp{αj (Hj−1;ψ)}
,

or, equivalently, logit{λj (Hj−1;ψ)} = αj (Hj−1;ψ), for some functions αj (Hj−1;ψ), j = 1, ... , T . Then it is

straightforward to demonstrate that the MLE ψ̂ for ψ maximizing the above likelihood is the solution

to the estimating equation

N∑
i=1

T∑
j=2

Ri ,j−1
∂

∂ψ
{αj (Hi ,j−1;ψ)}{I(Di = j)− λj (Hi ,j−1;ψ)} = 0. (5.43)

In practice, it would be unusual for an analyst to posit models λj (Hj−1;ψ) that share a common pa-

rameter ψ across different j . Rather, a standard approach is to take the model for each occasion j to

have a separate parameter ψj , say, so that ψ = (ψT
2 , ... ,ψT

T )T , and the ψj are variation independent.

Thus, one would take λj (Hj−1;ψ) = λj (Hj−1;ψj ) for each j . In this case, solving (5.43) for ψ boils down

to solving
N∑

i=1

Ri ,j−1
∂

∂ψj
{αj (Hi ,j−1;ψj )}{I(Di = j)− λj (Hi ,j−1;ψj )} = 0

separately for j = 2, ... , T . That is, to estimate ψj , compute the MLE among individuals who have still

not dropped out at time j −1, using as the response the indicator of whether or not such an individual

drops out at time j (or continues beyond j).

Standard software can be used to fit these models; e.g., if the αj (Hj−1;ψj ) are linear in ψj , software

such as SAS proc logistic or any generalized linear model software can be used.

COMPARISON OF SUBJECT AND OCCASION LEVEL WEIGHTING:

• The subject level approach has greater practical appeal because it is easier to implement

using standard software for solving GEEs. Many such programs, such as SAS proc genmod,

allow the user to specify a fixed weight for each individual. Thus, the user can model and

fit the dropout hazards, form weights, and incorporate them straightforwardly in a call to such

software to solve the subject level WGEE. The advent of software implementing the occasion

level approach, as discussed previously, lessens this appeal.

• Theoretically, it is not straightforward to deduce if the subject level or occasion level approach

is preferred in general on the basis of efficiency.
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• Preisser, Lohman, and Rathouz (2002) carried out extensive simulation studies comparing

the two approaches under various MCAR, MAR, and MNAR missingness mechanisms and

under correct and misspecified dropout models. They concluded that, overall, under MAR, the

occasion level WGEE is to be preferred on efficiency grounds, but noted that both methods can

be sensitive to misspecification of the associated weights.

5.4 Doubly robust estimation

We now examine more closely the class of augmented inverse probability weighted complete

case estimating functions (5.40), namely,

RT

πT (HT−1)

T∑
j=1

Aj (X ){Yj − µj (X ;β)} +
T−1∑
j=1

{
Rj

πj (Hj−1)
−

Rj+1

πj+1(Hj )

}
fj (Hj ). (5.44)

From the theory of semiparametrics for missing data problems, it can be shown (Tsiatis, 2006) that,

for fixed {A1(x), ... ,AT (x)}, the optimal choice of fj (Hj ) in (5.44) is

fj (Hj ) = E

[
T∑
`=1

A`(X ){Y` − µ`(X ;β)}

∣∣∣∣∣Hj

]
,

=
j∑
`=1

A`(X ){Y` − µ`(X ;β)} +
T∑

`=j+1

A`(X )E [{Y` − µ`(X ;β)}|Hj ], (5.45)

for j = 1, ... , T − 1. That is, for fixed Aj (x), j = 1, ... , T , using this choice of fj (Hj ), which depends on

the particular fixed Aj (x), will yield the estimating function of form (5.44) with this fixed Aj (x) leading

to the estimator for β with smallest asymptotic variance.

REMARKS:

• To compute fj (Hj ), j = 1, ... , T − 1, in (5.45), we must be able to estimate

E [{Y` − µ`(X ;β)}|Hj ], ` > j

based on the observed data. We discuss this shortly.

• In the special case where (Y1, V1), ... , (YT , VT ) are conditionally independent given X ,

E [{Y` − µ`(X ;β)}|Hj ] = 0 for ` > j ,

so that the optimal choice is

fj (Hj ) =
j∑
`=1

A`(X ){Y` − µ`(X ;β)}.

This leads to the occasion level WGEE in (5.38) with Aj (x) = Bj (x), j = 1, ... , T .
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However, if (Y1, V1), ... , (YT , VT ) are correlated conditional on X , then it is possible to take

advantage of this correlation by choosing the fj (Hj ) judiciously to gain efficiency. Essentially,

this correlation allows us to gain back some information regarding the missing data from the

observed data.

• Moreover, the resulting estimator will be doubly robust in the sense that it will lead to a consis-

tent estimator for β if EITHER πj (Hj−1) (equivalently, the λj (Hj−1)), j = 2, ... , T , are consistently

estimated (i.e., we have a correct model for the dropout process), OR if

E [{Y − µ(X ;β)|Hj ]

is consistently estimated for all j = 1, ... , T .

This doubly robust method is advocated by Seaman and Copas (2009) using the fixed choice

{A1(x), ... ,AT (x)} = DT (x ;β)V−1(x ;β).

As we demonstrated in the last section, for the occasion level WGEE, Aj (x) = Bj (x), j =

1, ... , T , and this is the choice suggested by Robins et al. (1995) in (5.39).

• For both the subject and occasion level WGEEs in (5.36) and (5.38), with the implied choices

for the Aj (x) given in the previous section, the corresponding fj (Hj ) are not the same as the

optimal choice in (5.45). This suggests that it is possible to improve on both of these estimators.

• In this discussion, we have restricted attention to fixed {A1(x), ... ,AT (x)}; as noted above, in

many cases, these are taken to be the choice leading to the optimal GEE for full data. However,

it turns out that, from semiparametric theory, that this is not the optimal choice with observed

data subject to dropout. Shortly, we discuss the globally optimal choice and whether or not it

is even feasible to implement this choice in practice.

ESTIMATING THE AUGMENTATION TERM FOR DOUBLY ROBUST ESTIMATORS: As we have

just seen, for fixed {A1(x), ... ,AT (x)}, from (5.45), the optimal choice for fj (Hj ) for construction of a

doubly robust, augmented inverse probability weighted estimating function for β requires determining

E [{Y − µ(X ;β)|Hj ], j = 1, ... , T − 1.

Because these conditional expectations are not known, they must be estimated from the observed

data. We now examine how this might be carried out in practice.
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For convenience, denote the centered data as

ε = Y − µ(X ;β),

with elements εj = Yj − µj (X ;β). By MAR, it can be shown that, in obvious notation,

pεj+1,Vj+1|Hj
(εj+1, vj+1|hj ) = pεj+1,Vj+1|Hj ,Rj+1

(εj+1, vj+1|hj , 1); (5.46)

that is, the conditional density of (εj+1, Vj+1) given Hj is the same as this conditional density among

those individuals who still have not dropped out at time tj+1, at which time we observe (εj+1, Vj+1, Hj ) .

To see this, write the right hand side of (5.46) as

pr(Rj+1 = 1|εj+1, Vj+1 = vj+1, Hj = hj )pεj+1,Vj+1,Hj (εj+1, vj+1, hj )
pr(Rj+1 = 1|Hj = hj )pHj (hj )

. (5.47)

Because of MAR, pr(Rj+1 = 1|εj+1, Vj+1 = vj+1, Hj = hj ) = pr(Rj+1 = 1|Hj = hj ), so that (5.47) becomes

pεj+1,Vj+1,Hj (εj+1, vj+1, hj )
pHj (hj )

= pεj+1,Vj+1|Hj
(εj+1, vj+1|hj ).

It is convenient to write Hj equivalently as the ordered column vector

Hj = (1, X T , ε1, V T
1 , ... , εj , V T

j )T , j = 1, ... , T − 1.

We wish to estimate E(ε|Hj ) for each j .

In general, this is a numerical challenge. One possible approach is based on making the approxi-

mation that (ε1, ... , εT , V T
1 , ... , V T

T , X T )T is multivariate normal.

To see how this works, let qj be the dimension of Hj and rj be the dimension of Vj , j = 1, ... , T . Note

that qj+1 = qj + rj + 1. Under the normality assumption,

E

 εj+1

Vj+1

∣∣∣∣∣∣Hj

 =

 Λj

Γj

Hj ,

where Λj (1 × qj ) and Γj (rj × qj ) are constants. That is, the conditional expectation of (εj+1, V T
j+1)T

given Hj is a linear combination of elements of Hj for each j .

Note that we can also write

E(Hj+1|Hj ) =


Iqj

Λj

Γj

Hj = ∆jHj ,

say. Here ∆j is (qj+1 × qj ).
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As noted earlier, because of MAR, in fact

E(Hj+1|Hj ) = E(Hj+1|Hj , Rj+1 = 1);

consequently, the elements of ∆j can be estimated using the individuals at risk at time tj+1; i.e, those

individuals who have still not dropped out at tj+1.

This can be accomplished using least squares for each j by regressing εj+1 and each element of Vj+1

on those of Hj . Note that

HT = (1, X T , ε1, V T
1 , ... , εT , V T

T )T ;

thus, by the laws of iterated conditional expectations,

E(HT |Hj ) = ∆T−1∆T−2 · · ·∆jHj .

Consequently, fj (Hj ) = E(ε|Hj ) can be obtained by “picking off” the elements E(ε|Hj ) from E(HT |Hj ).

In fact, if we are willing to assume multivariate normality of C = (ε1, ... , εT , V T
1 , ... , V T

T )T given X , then

it is possible to use the EM algorithm with monotone missingness to estimate the parameters in the

covariance matrix of C given X and thereby obtain an estimate of the working covariance matrix

corresponding to the submatrix var(ε1, ... , εT |X ).

REMARK: We do not elaborate on this scheme further, as, admittedly it is quite involved.

LOCALLY EFFICIENT DOUBLY ROBUST ESTIMATOR: We now examine how semiparametric the-

ory can be used in principle to obtain the globally optimal WGEE.

Consider again the class of augmented inverse probability weighted complete case estimating

functions (5.40),

RT

πT (HT−1)

T∑
j=1

Aj (X ){Yj − µj (X ;β)} +
T−1∑
j=1

{
Rj

πj (Hj−1)
−

Rj+1

πj+1(Hj )

}
fj (Hj ). (5.48)

We have discussed the optimal choice of the fj (Hj ) when the Aj (x) are fixed. However, as we

remarked previously, this will not lead to the globally optimal estimating function of form (5.48) unless

the optimal choice of the Aj (x) is used.
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In Tsiatis (2006), it is shown that the optimal {A1(x), ... ,AT (x)} is given by

{A1(x), ... ,AT (x)} = DT (x ;β){V∗(x)}−1,

where

V∗(X ) = E
{

εεT

πT (HT−1)

∣∣∣∣X}− T−1∑
j=1

E
{
λj+1(Hj )
πj+1(Hj )

E(ε|Hj )εT
∣∣∣∣X} , (5.49)

which can be written equivalently as

V∗(X ) = E
{

εεT

πT (HT−1)

∣∣∣∣X}− T−1∑
j=1

[
E
{

E(ε|Hj )
πj (Hj−1)

εT
∣∣∣∣X}− E

{
E(ε|Hj )
πj+1(Hj )

εT
∣∣∣∣X}] .

Of course, (5.49) is obviously very difficult to evaluate. However, under the approximation of multi-

variate normality already discussed, this should be feasible in principle.

In fact, this could be carried out by simulation. If we were to simulate realizations (ε(s) T , V (s) T
1 , ... , V (s) T

T )T ,

s = 1, ... , S, for large S, from a multivariate normal model for (εT , V T
1 , ... , V T

T )T given X , we can esti-

mate V∗(x) as

S−1
S∑

s=1

 ε(s)ε(s) T

πT (H (s)
T−1)

−
T−1∑
j=1

λj+1(H (s)
j )

πj+1(H (s)
j )

E(ε|H (s)
j )ε(s) T

 .

Whether or not this is a feasible strategy, and whether or not going to all of this trouble will yield an

estimator for β that offers a nonnegligible gain in relative efficiency over the methods discussed

previously is an open research problem.

5.5 Discussion

Inverse probability weighted methods are a natural approach to analysis under MAR dropout in prob-

lems where a semiparametric full data model is of interest. As long as the dropout mechanism is

correctly modeled (so that the dropout hazards are correct for each time point), methods based on

inverse weighted (non-augmented) estimating functions will lead to consistent estimators for parame-

ters in the semiparametric model of interest. These can be implemented straightforwardly in practice,

and there is emerging software to do so.

Where doubly robust, augmented inverse probability weighted estimators are feasible in practice,

these offer protection against misspecification of these models. However, as we have seen, in all but

the simplest settings, these can be rather challenging to implement. See Seaman and Copas (2009)

and Vansteelandt, Carpenter, and Kenward (2010) for discussion and simulation studies of the extent

of improvement possible.
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STANDARD ERRORS: We have not discussed how to obtain standard errors for any of the estima-

tors. In principle, because all of these estimators are M-estimators, as reviewed in Section 1.5 of

Chapter 1, it is possible to derive the form of the asymptotic covariance matrix for the estimator for

the parameter of interest using the sandwich technique as in (1.42) and (1.43).

• Here, one must take account of the fact that the parameter of interest is estimated jointly with

the parameters in the dropout models and working covariance model by solving accompanying

estimating equations for these parameters.

Thus, application of the sandwich technique should be to all of these equations, “stacked ;”

see, for example, Theorem 1 of Robins et al. (1995) and Section 2 of Preisser et al. (2002).

• According to the documentation for SAS proc gee, this is implemented in this procedure when

the missmodel statement is invoked.

• It is well known from semiparametric theory that ignoring the fact that the weights are es-

timated and treating them as fixed (as would be the default for usual GEE software such as

SAS proc genmod) leads to standard errors that are conservative and thus understate the

precision with which parameters of interest are estimated.

• As always, an alternative to all of this is to employ a nonparametric bootstrap.

5.6 Semiparametric theory

As we have discussed, the foundation for the methods discussed in this chapter is the theory of

semiparametrics. A comprehensive account of how application of this theory leads to the classes of

estimators involving inverse probability weighting we have reviewed is the subject of an entire course.

The book by Tsiatis (2006) is a seminal reference on this topic and provides a detailed account of

semiparametric theory and its application to deriving such estimators.

In this section, we present a basic introduction to the geometric principles underlying this powerful

theory. We draw upon brief accounts given by Davidian, Tsiatis, and Leon (2005) and Kennedy

(2016), which can be consulted for more details.
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PARAMETRIC AND SEMIPARAMETRIC MODELS: We first review the notion of a statistical model

introduced in Section 1.3. A statistical model is a class of probability distributions that is assumed to

have generated the data (and thus is assumed to contain the true distribution).

In the context of generic data Z , with density pZ (z), a parametric model is one in which the class of

probability distributions is indexed by a finite-dimensional parameter θ (q × 1), so involving densities

of the form pZ (z; θ), and the goal is to make inference on θ or, partitioning θ as θ = (βT , ηT )T , on a

subset β of interest. In a semiparametric model for pz(z), the class of probability distributions is

indexed by finite-dimensional and infinite-dimensional components, so involves densities of the form

pZ{z;β, η(·)}, where β is a finite-dimensional parameter of interest and η(·) is an infinite-dimensional

component.

Semiparametric theory leads to a class of estimators for β based on iid data, from which the (asymp-

totically) efficient estimator in the class can be deduced. In both parametric and semiparametric

models as defined here, we view the finite-dimensional parameter η in a parametric model or the

infinite-dimensional η(·) as a nuisance parameter, which is not of central interest but must be dealt

with in making inference on β.

INFLUENCE FUNCTIONS: In this theory, attention is restricted to estimators that are regular and

asymptotically linear (RAL), as introduced briefly in Section 4.9. Regularity is a technical condition

that rules out “pathological” estimators, such as “superefficient” estimators (see Tsiatis, 2006, Section

3.1). Generically, if we have a parametric or semiparametric model for Z that contains the true

distribution generating the data, and if β0 is the associated true value of β, an asymptotically linear

estimator for β based on iid data Zi , i = 1, ... , N, satisfies

N1/2(β̂ − β0) = N−1/2
N∑

i=1

ϕ(Zi ) + op(1), (5.50)

where op(1) represents terms that converge in probability to zero as N → ∞, and the function ϕ(Z )

is referred to as the influence function of β̂. The influence function satisfies

E{ϕ(Z )} = 0, E{ϕ(Z )Tϕ(Z )} <∞,

where expectation is with respect to the true distribution of Z .

It is immediate from (5.50) by the central limit theorem that an asymptotically linear estimator with

influence function ϕ(Z ) is consistent and asymptotically normal with mean zero and covariance matrix

E{ϕ(Z )ϕ(Z )T}.
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There exists an influence function ϕeff (Z ), say, such that

E{ϕ(Z )ϕ(Z )T} − E{ϕeff (Z )ϕeff (Z )T}

is nonnegative definite for any other influence function ϕ(Z ), and ϕeff (Z ) is referred to as the efficient

influence function.

RELATIONSHIP BETWEEN ASYMPTOTICALLY LINEAR ESTIMATORS AND INFLUENCE FUNC-

TIONS: It is straightforward to show by contradiction that a RAL estimator satisfying (5.50) has a

unique (almost surely) influence function. If this were not the case, then there would exist another

influence function ϕ∗(Z ), say, with E{ϕ∗(Z )} = 0 that also satisfies (5.50). If (5.50) holds for both ϕ(Z )

and ϕ∗(Z ), then it must be that

AN = N−1/2
N∑

i=1

{ϕ(Zi )− ϕ∗(Zi )} = op(1);

that is, AN
p−→ 0. However, by the central limit theorem, it is also the case that

AN
L−→ N

(
0, E

[
{ϕ(Z )− ϕ∗(Z )}{ϕ(Z )− ϕ∗(Z )}T

])
.

For AN to converge to probability to zero and in distribution, it must be that

E
[
{ϕ(Z )− ϕ∗(Z )}{ϕ(Z )− ϕ∗(Z )}T

]
= 0,

which implies that ϕ(Z ) = ϕ∗(Z ) almost surely.

This result demonstrates that there is a one-to-one correspondence between asymptotically linear

estimators and influence functions. This suggests that, by identifying influence functions, we can

deduce estimators. Thus, characterizing the space of all influence functions is the fundamen-

tal premise underlying semiparametric theory. Once this space is deduced, we can then construct

estimators and contrast them on the basis of efficiency.

GEOMETRIC PERSPECTIVE ON THE PARAMETRIC MODEL: We introduce the ideas first in the

context of a parametric model pZ (z; θ), θ = (βT , ηT )T as above, with β (p × 1) and η (r × 1), which

we assume to be correctly specified in the usual sense that there exists θ0 = (βT
0 , ηT

0 )T such that

pZ (z; θ0) is the true density of Z . To simplify the notation, we take the parameter β to be one-

dimensional. Although ultimately we are concerned with our missing data problem, the following

demonstration treats Z and the iid data Zi , i = 1, ... , N, as generic, so we do not, for example, use

notation distinguishing full versus observed data.
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MAXIMUM LIKELIHOOD IN A PARAMETRIC MODEL: We demonstrate the basic ideas of this ge-

ometric perspective in the context of the familiar setting of maximum likelihood. We take θ = (β, ηT )T ,

so that q = 1 + r , and define the score vector

Sθ(Z ; θ) = {Sβ(Z ; θ), Sη(Z ; θ)T}T =
[∂ log{pZ (Z ; θ)

∂β
,
∂ log{pZ (Z ; θ)

∂ηT

]T
.

As is well known, the expected information matrix is of the form

I(θ0) = E{Sθ(Z ; θ0)Sθ(Z ; θ0)T} =

 Iββ Iβη
IT
βη Iηη

 , Iηη (r × r ), Iβη (1× r ). (5.51)

Letting θ̂ = (β̂, η̂T )T denote the maximum likelihood estimator for θ maximizing
∑N

i=1 log{pZ (Zi ; θ)},

it is well known that, under the usual regularity conditions,

N1/2(β̂ − β0) = N−1/2
N∑

i=1

ϕeff (Zi ) + op(1), (5.52)

ϕeff (Z ) = I−1
ββ•η{Sβ(Z ; θ0)− IβηI−1

ηη Sη(Z ; θ0)}, Iββ•η = Iββ − IβηI−1
ηη IT

βη. (5.53)

Clearly, E{ϕeff (Z )} = 0, and thus the maximum likelihood estimator β̂ for β has influence function

ϕeff (Z ). The quantity in braces in (5.53),

Seff (Z ) = Sβ(Z ; θ0)− IβηI−1
ηη Sη(Z ; θ0),

is often called the efficient score. It is straightforward to show that (try it) Seff (Z ) has mean zero and

variance Iββ•η. It then follows from (5.52) that β̂ is asymptotically normal with asymptotic variance

E{ϕeff (Z )2} = I−1
ββ•η,

which is the well known Cramér-Rao lower bound , the smallest possible variance. Thus, as is

also well known, β̂ is the efficient estimator for β, and we have accordingly referred to its influence

function as ϕeff (Z ).

Having stated these fundamental results, we now derive them from the geometric perspective that

underlies semiparametric theory.

HILBERT SPACE: A Hilbert space H is a linear vector space, so has the property that

ah1 + bh2 ∈ H for h1, h2 ∈ H

and any real a, b, equipped with an inner product.
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The key feature underlying the geometric perspective is that influence functions based on data Z

for estimators for a p-dimensional parameter β in a (parametric or semiparametric) statistical model

can be viewed as elements in the particular Hilbert space H of all p-dimensional, mean zero (mea-

surable) functions h(Z ), so with E{h(Z )} = 0, such that E{h(Z )T h(Z )} <∞, with covariance inner

product

E{h1(Z )T h2(Z )} for h1, h2 ∈ H,

and corresponding norm, measuring “distance” from h ≡ 0, given by

‖h‖ = [E{h(Z )T h(Z )}]1/2.

A Hilbert space can thus be viewed as a generalization of usual Euclidean space and provides

notions of distance and direction for spaces whose elements are potentially infinite-dimensional

functions. The geometry of Hilbert spaces provides a unified framework for deducing results regard-

ing influence functions in both parametric and semiparametric models.

We state some important general results concerning Hilbert spaces;

• A space M ⊂ H is a linear subspace if m1, m2 ∈ M implies that am1+bm2 ∈ M for all scalar a, b.

The origin is included by default (a = b = 0). For example, if h1, ... , hk are arbitrary elements of

H, then the space comprising elements of the form a1h1 + · · · + akhk for all (a1, ... , ak ) ∈ Rk is a

linear subspace spanned by {h1, ... , hk}.

• For any linear subspace M of H, the set of all elements of H orthogonal to those in M,

denoted M⊥ (i.e., such that if h1 ∈ M and h2 ∈ M⊥, the inner product of h1, h2 is zero), is also

a linear subspace of H.

• For two linear subspaces M and N, M ⊕ N is the direct sum of M and N if every element in

M ⊕N has a unique representation of the form m + n for m ∈ M, n ∈ N. Intuitively, it is the case

that the entire Hilbert space H = M ⊕M⊥.

• An essential concept is the notion of a projection. The projection of h ∈ H onto a closed linear

subspace M of H is the element in M, denoted by Π(h|M), such that

‖h − Π(h|M)‖ < ‖h −m‖ for all m ∈ M.

The residual h − Π(h|M) is orthogonal to all m ∈ M.

• The Projection Theorem for Hilbert Spaces states that such a projection is unique; this

is shown in Luenberger (1969, Section 3.3). The book by Luenberger (1969) is a seminal

reference on Hilbert spaces.

153



CHAPTER 5 ST 790, MISSING DATA

An important subspace of H is the tangent space. For our parametric model, the tangent space Γ is

defined as the linear subspace of H spanned by the entire score vector Sθ(Z ; θ0); i.e.,

Γ = {BSθ(Z ; θ0) for all (1× q) B},

the space of all linear combinations of Sθ(Z ; θ0). The tangent space can be decomposed as

Γ = Γβ ⊕ Λ, Γβ = {BSβ(Z ; θ0) for all real-valued B} (5.54)

and

Λ = {BSη(Z ; θ0) for all (1× r ) B}, (5.55)

the linear subspace spanned by the score vector of the nuisance parameter η. Accordingly, the

space Λ in (5.55) is referred to as the nuisance tangent space.

FUNDAMENTAL RESULT: All influence functions for RAL estimators for β lie in the subspace Λ⊥

orthogonal to the nuisance tangent space.

Although the proof of this result is beyond our scope here, it is straightforward to provide an example

by demonstrating that the efficient influence function ϕeff in (5.52) lies in Λ⊥. We must show that

E{ϕeff (Z )T BSη(Z ; θ0)} = E [{Sβ(Z ; θ0)− IβηI−1
ηη Sη(Z ; θ0)}T BSη(Z ; θ0)]/Iββ•η = 0

for all B (1× r ). By taking B to successively be a (1× r ) vector with a “1” in one component and “0”s

elsewhere, this may be seen to be equivalent to showing that

E [{Sβ(Z ; θ0)− IβηI−1
ηη Sη(Z ; θ0)}Sη(Z ; θ0)T ] = 0,

which follows immediately (try it).

Thus, one approach to identifying influence functions for a particular model with θ = (β, ηT )T is to

characterize the form of elements in Λ⊥ directly. Alternatively, the following result suggests another

approach to characterizing influence functions.

REPRESENTATION OF INFLUENCE FUNCTIONS: All influence functions for RAL estimators for β

can be represented as

ϕ(Z ) = ϕ∗(Z ) + ψ(Z ), (5.56)

where ϕ∗(Z ) is any influence function and ψ(Z ) ∈ Γ⊥, the subspace of H orthogonal to Γ.
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DEFINING PROPERTIES OF INFLUENCE FUNCTIONS: We can demonstrate this representation

by appealing to two defining properties of influence functions ϕ(Z ), which are related to regularity

and whose proofs are beyond our scope here (see Tsiatis, 2006, Sections 3.1 and 3.2).

(i) E{ϕ(Z )Sβ(Z ; θ0)} = 1

(ii) E{ϕ(Z )Sη(Z ; θ0)T} = 0, (1× r ).

We used the general version of property (i) in the derivation of the large sample distribution of the

improper imputation estimator in Section 4.9. If ϕ(Z ) is an influence function, (i) and (ii) must hold;

conversely, if (i) and (ii) hold, ϕ(Z ) must be an influence function.

To show (5.56), we first demonstrate that if ϕ(Z ) can be written as ϕ∗(Z ) + ψ(Z ) as in (5.56) , where

ϕ∗(Z ) is any influence function and ψ(Z ) ∈ Γ⊥, then ϕ(Z ) is an influence function. From the def-

inition of Γβ in (5.54), if ψ ∈ Γ⊥, then ψ(Z ) is orthogonal to functions in both Λ and Γβ, so that

E{ψ(Z )Sβ(Z ; θ0)} = 0 and E{ψ(Z )Sη(Z ; θ0)T} = 0 (1 × r ). Moreover, because ϕ∗(Z ) is an influence

function, it satisfies (i) and (ii), from whence it follows that ϕ(Z ) also satisfies (i) and (ii) and thus is

itself an influence function.

Conversely, we can demonstrate that if ϕ(Z ) is an influence function, it can be represented as in

(5.56). If ϕ(Z ) is an influence function, it must satisfy (i) and (ii), and, writing ϕ(Z ) = ϕ∗(Z ) + {ϕ(Z )−

ϕ∗(Z )} for some other influence function ϕ∗(Z ), it is straightforward to use (i) and (ii) to show that (try

it) ψ(Z ) = {ϕ(Z )− ϕ∗(Z )} ∈ Γ⊥.

The representation (5.56) also implies a useful characterization of the efficient influence function

ϕeff (Z ), which here satisfies E{ϕ(Z )2} − E{ϕeff (Z )2} ≥ 0 for all influence functions ϕ(Z ).

REPRESENTATION OF THE EFFICIENT INFLUENCE FUNCTION: ϕeff (Z ) can be represented as

ϕeff (Z ) = ϕ(Z )− Π(ϕ|Γ⊥)(Z )

for any influence function ϕ(Z ).

This follows because, for arbitrary ϕ(Z ), ϕeff (Z ) = ϕ(Z )−ψ(Z ) for ψ ∈ Γ⊥, and E{ϕeff (Z )2} = ‖ϕ−ψ‖

must be as small as possible, it must be that ψ = Π(ϕ|Γ⊥).
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In our simple parametric model with θ = (β, ηT )T , it is possible to identify explicitly the form of the

efficient influence function ϕeff (Z ). Here, the efficient score is defined as the residual of the score

vector for β after projecting it onto the nuisance tangent space,

Seff (Z ; θ0) = Sβ(Z ; θ0)− Π(Sβ|Λ),

and the efficient influence function is an appropriately-scaled version of Seff (Z ) given by

ϕeff (Z ) =
[
E{Seff (Z ; θ0)2}

]−1
Seff (Z ; θ0).

• It is straightforward to observe that ϕeff (Z ) is an influence function by showing it satisfies proper-

ties (i) and (ii) above. Specifically, by construction, Seff (Z ) ∈ Λ⊥, so that (ii) holds. This implies

E{ϕeff (Z )Π(Sβ|Λ)(Z )} = 0, so that

E{ϕeff (Z )Sβ(Z ; θ0)} = E{ϕeff (Z )Seff (Z ; θ0)} + E{ϕeff (Z )Π(Sβ|Λ)(Z )}

=
[
E{Seff 2(Z ; θ0)}

]−1
E{Seff 2(Z ; θ0)} = 1,

demonstrating property (i).

• That ϕeff (Z ) has smallest variance among all influence functions can be seen by using the fact

that all influence functions can be written as ϕ(Z ) = ϕeff (Z )+ψ(Z ) for some ψ(Z ) ∈ Γ⊥. Because

Sβ ∈ Γβ, Π(Sβ|Λ) ∈ Λ are both in Γ, it follows that E{ψ(Z )ϕeff (Z )} = 0. Thus, E{ϕ(Z )2} =

E [{ϕeff (Z ) + ψ(Z )}2] = E{ϕeff (Z )2} + E{ψ(Z )2}, so that any other influence function ϕ(Z ) has

variance at least as large as that of ϕeff (Z ), and this smallest variance is immediately seen to

be 1/Seff (Z ; θ0)2.

MAXIMUM LIKELIHOOD IN A PARAMETRIC MODEL, REVISITED: We can place the familiar max-

imum likelihood results when θ = (β, ηT )T above in this framework. By definition, Π(Sβ|Λ) ∈ Λ is the

unique element B0Sη ∈ Λ such that

E [{Sβ(Z ; θ0)− B0Sη(Z ; θ0)}BSη(Z ; θ0)] = 0 for all B (1× r ).

As above, this is equivalent to requiring

E [{Sβ(Z ; θ0)− B0Sη(Z ; θ0)}Sη(Z ; θ0)T ] = 0 (1× r ),

implying that B0 = IβηI−1
ηη . Thus, as expected,

Π(Sβ|Λ) = IβηI−1
ηη Sη(Z ; θ0) and Seff (Z ; θ0) = Sβ(Z ; θ0)− IβηI−1

ηη Sη(Z ; θ0).
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For a parametric model, it is usually unnecessary to appeal to the foregoing geometric construction

to identify the efficient estimator and influence functions. In contrast, in the more complex case of a

semiparametric model, such results often can not be derived readily. However, as we now discuss,

the geometric perspective may be generalized to semiparametric models, providing a systematic

framework for identifying influence functions.

GEOMETRIC PERSPECTIVE ON THE SEMIPARAMETRIC MODEL: We now consider the gener-

alization of the above results for parametric models to the semiparametric model characterized

by the class of distributions P, say, comprising densities of the form p{z;β, η( · )} depending on an

infinite-dimensional parameter η( · ). An even more general formulation is discussed by Davidian et

al. (2005). We only present a sketch of the main ideas; a precise and detailed account is given in

Tsiatis (2006, Chapter 4).

PARAMETRIC SUBMODEL: The key to the generalization is the notion of a parametric submodel.

In words, a parametric submodel is a parametric model contained in the semiparametric model that

contains the truth, where the truth is the density p{z;β0, η0(·)} ∈ P generating the data.

More formally, a parametric submodel is the class Pβ,ξ of all densities p(z;β, ξ) characterized by the

finite-dimensional parameter (βT , ξT )T such that

(i) Pβ,ξ ⊂ P, so that every density in Pβ,ξ belongs to the semiparametric model P.

(ii) The parametric submodel contains the truth in the sense that there exists a density in Pβ,ξ

identified by (βT
0 , ξT

0 )T such that the true density is

p{z;β0, η0( · )} = p(z;β0, ξ0) ∈ Pβ,ξ.

The dimension r of ξ varies according to the choice of submodel. We again take β to be one-

dimensional for simplicity.

A parametric submodel is not a model one would use for data analysis; given that we do not know

the truth, it is not possible to specify a parametric submodel for use in practice. Rather, it is a

conceptual device that is used to develop theory for semiparametric models.
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Because a parametric submodel is a parametric model, albeit one not useful in practice, we know

from the development above for parametric models that

(i) Influence functions for RAL estimators for β in a parametric submodel belong to the subspace

of the Hilbert space H whose elements are orthogonal to the parametric submodel nuisance

tangent space

Λξ = {BSξ(Z ;β0, ξ0) for all (1× r ) B}, Sξ(Z ;β, ξ) =
∂ log{pZ (Z ;β, ξ)}

∂ξT .

(ii) The efficient influence function for the parametric submodel is given by

ϕeff
β,ξ(Z ) =

[
E{Seff

β,ξ(Z ;β0, ξ0)2}
]−1

Seff
β,ξ(Z ;β0, ξ0),

where the parametric model efficient score is

Seff
β,ξ(Z ) = Seff

β,ξ(Z ;β0, ξ0) = Sβ(Z ;β0, ξ0)− Π{Sβ(Z ;β0, ξ0)|Λξ}.

(iii) The smallest asymptotic variance for RAL estimators for β in the parametric submodel is[
E{Seff

β,ξ(Z )2}
]−1

. (5.57)

INFLUENCE FUNCTIONS FOR RAL ESTIMATORS THE SEMIPARAMETRIC MODEL: An estima-

tor is an (RAL) estimator for β under the semiparametric model if it is a RAL estimator under every

parametric submodel. Thus, the class of estimators for β for the semiparametric model must be

contained in the class of estimators for a parametric submodel and thus any influence function for

the semiparametric model must be an influence function for a parametric submodel. It follows that

• Any influence function of a RAL estimator for β for the semiparametric model must be orthog-

onal to all parametric submodel nuisance tangent spaces.

• Accordingly, the semiparametric model nuisance tangent space Λ ⊂ H is defined as the

mean square closure of all parametric submodel nuisance tangent spaces Λξ; that is, Λ = {h ∈

H such that there exists a sequence BjSξj (Z ) for which ‖h(Z )−BjSξj (Z )‖2 → 0 as j →∞}. See

Tsiatis (2006, Section 4.4) for details. It can then be shown that all influence functions for the

semiparametric model lie in Λ⊥, the space orthogonal to the semiparametric model nuisance

tangent space.
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• Thus, the variance of any semiparametric model influence function must be greater than or

equal to (5.57) for all parametric submodels Pβ,ξ. That is, the variance of the influence function

of any semiparametric estimator for β must be greater than or equal to the supremum of (5.57)

over all parametric submodels; that is,

supPβ,ξ

[
E{Seff

β,ξ(Z )2}
]−1

. (5.58)

The supremum (5.58) is defined to be the semiparametric efficiency bound ; i.e., the supre-

mum over all parametric submodels of the Cramér-Rao lower bounds. Any semiparametric RAL

estimator for β with asymptotic variance achieving this bound is said to be locally efficient .

Geometrically, the parametric submodel efficient score is the residual of Sβ(Z ;β0, ξ0) after project-

ing it onto the parametric submodel nuisance tangent space Λξ. With β one-dimensional as we are

taking it to be here, the inverse of the norm squared of this residual is the smallest variance for all

influence functions for RAL estimators for β in the parametric submodel. As we consider the linear

space spanned by the nuisance tangent spaces of all parametric submodels, the space becomes

larger and the norm of the residual becomes smaller, so that the variance (inverse of norm squared)

becomes larger. As a result, the efficient semiparametric estimator has variance larger than the

efficient estimator for any parametric submodel.

The foregoing developments can be made precise; this is way beyond our scope here. The result is

that the key to deriving influence functions for the semiparametric model is to identify the semipara-

metric model nuisance tangent space Λ and the form of elements of H that are orthogonal to it.

Tsiatis (2006, Section 4.5) presents a detailed demonstration for the semiparametric model we have

discussed previously, namely

E(Y |X = x) = µ(x ;β). (5.59)

FULL DATA INFLUENCE FUNCTIONS: Our development to now has been generic. We now take Z

to be the full data in a missing data problem involving a semiparametric full data model p{z;β, η(·)}.

Denote the Hilbert space of all mean zero functions h(Z ) of the full data as HF . Then we can use the

formulation above to identify the class of all full data influence functions ϕF (Z ), say, for estimators

for β, which reside in the space ΛF⊥, say, orthogonal to the full data nuisance tangent space ΛF .
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OBSERVED DATA INFLUENCE FUNCTIONS: Letting as usual (R, Z(R)) denote the observed data

under a MAR missingness mechanism, the key advance of Robins, Rotnitzky, and Zhao (1994) was

to derive, for a general semiparametric model, the class of all observed data influence functions

and to characterize the efficient observed data influence function in this class.

Here, the relevant Hilbert space in which observed data influence functions reside, H, say, is now

the space of all p-dimensional, mean zero (measurable) functions h(R, Z(R)), so with

E{h(R, Z(R))} = 0, E{h(R, Z(R))T h(R, Z(R))} <∞,

with covariance inner product.

E{h1(R, Z(R))T h2(R, Z(R))} for h1, h2 ∈ H,

and corresponding norm, measuring “distance” from h ≡ 0, given by

‖h‖ = [E{h(R, Z(R))T h(R, Z(R))}]1/2.

By the generic formulation, the class of all observed data influence functions ϕ(R, Z(R)), say, must lie

in the linear subspace Λ⊥ of H orthogonal to the observed data nuisance tangent space Λ.

OBSERVED DATA NUISANCE TANGENT SPACE: The semiparametric model involves the nui-

sance parameter η(·). As we know, the likelihood corresponding to the observed data involves

the missingness mechanism, for which in practice we might posit a model involving an additional

finite-dimensional parameter ψ. From the current perspective, we can view ψ as an additional nui-

sance parameter. Because under the separability condition η(·) and ψ are distinct, we expect the

observed nuisance tangent space Λ to be the direct sum of two orthogonal spaces, one involving

the space generated by the score vector for ψ Λψ, say; and one for η(·) (being the mean square clo-

sure of all parametric submodel nuisance tangent spaces spanned by score vector for the submodel

parameter ξ), Λη, say, so that

Λ = Λη ⊕ Λψ.

The general derivation of Λ and the space Λ⊥ orthogonal to it is complicated and is discussed in

detail in Tsiatis (2006, Chapter 6-11).
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FORM OF OBSERVED DATA INFLUENCE FUNCTIONS: The resulting theory shows that there

is a relationship between full and observed data influence functions. The form of observed data

influence functions involves an inverse probability weighted full data influence function plus an

augmentation. Here, it must be that the probability of observing full data given Z is > 0 for all Z

almost surely.

When the missingness mechanism is known, which is the case if MAR missingness is by design,

there is no parameter ψ, in which case Λ⊥ = Λ⊥η is the space where observed data influence functions

reside. Theorem 7.2 of Tsiatis (2006) presents the generic form of these influence functions in this

case. In our notation, with Z = (Z1, ... , ZK ), R = (R1, ... , RK ), and

pr(R = r |Z ) = pr(R = r |Z(r )) = π(r , Z(r ))

under MAR, and letting 1˜ be a K -vector of all ones, under the assumption that

π(1˜, Z ) > 0 for all Z almost surely,

the space Λ⊥ = Λ⊥η consists of all elements of H that can be written as

I(R = 1˜)ϕF (Z )
π(1˜, Z )

+
I(R = 1˜)
π(1˜, Z )

∑
r 6=1˜

π(r , Z(r ))L2r (Z(r ))

−∑
r 6=1˜
I(R = r )L2r (Z(r )), (5.60)

where ϕF (Z ) is an arbitrary element of ΛF⊥ (full data influence function) and, for r 6= 1˜, L2r (Z(r )) is an

arbitrary function of Z(r ).

EXAMPLE: SEMIPARAMETRIC REGRESSION MODEL: We demonstrate (5.60) in the special case

of regression in Section 5.2, where we now write the full data as Z = {Y , (X , V )}, where Y is a scalar

outcome, X is a vector of covariates of interest, and V is a set of additional, auxiliary covariates; and

we are interested in the semiparametric model characterized by (5.59),

E(Y |X = x) = µ(x ;β)

for β (p × 1). Assuming as in Section 5.2 that Y can be missing via a MAR mechanism and (X , V ) is

always observed, K = 2, and R = (R1, R2). In Section 5.2, we defined C = 1 when R = 1˜ and C = 0 if

R = (0, 1), which are the only two possible values r that R can take on.
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It can be shown that all elements of ΛF⊥, and thus all full data influence functions, are of the form

A(X ){Y − µ(X ;β)},

whereA(X ) (p×1) is an arbitrary p-dimensional function of X ; see Tsiatis (2006, Section 4.5). Letting

pr(C = 1|X , V ) = π(X , V )

as in Section 5.2, it follows from (5.60) that elements of Λ⊥ = Λ⊥η , that is, observed data influence

functions, are of the form

C
π(X , V )

[
A(X ){Y − µ(X ;β)} + {1− π(X , V )}L2(X , V )

]
− (1− C)L2(X , V )

=
C

π(X , V )
A(X ){Y − µ(X ;β)} +

C − π(X , V )
π(X , V )

L2(X , V ), (5.61)

where (5.61) follows by straightforward algebra.

When the missingness mechanism unknown and is modeled, and the model involves the parameter

ψ. when ψ is estimated by maximum likelihood, Theorem 9.1 of Tsiatis (2006) gives the form of the

observed data influence functions.

Finding the efficient observed data influence function in either case is very difficult in general.

Theorem 10.1 of Tsiatis (2006) gives the generic form of the optimal observed data influence function

if we restrict attention to the class of observed data influence functions involving a fixed full data

influence function ϕF (Z ). However, it is not necessarily the case that the efficient observed data

influence function involves the efficient full data influence function.

The application of semiparametric theory to the missing data problem is the subject of an entire

course. The brief review in this chapter is meant to give a sense of the considerations involved.
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