
CHAPTER 4 ST 790, MISSING DATA

4 Multiple Imputation Methods Under MAR

As discussed in Chapter 2, the idea of “filling in” missing values and then applying methods that would

have been used with the full data to carry out an analysis under a specified model for the full data

has great practical appeal. However, as noted in that chapter, simple, ad hoc strategies in this spirit

can lead to compromised inference. A principled approach for which such imputation of missing

data can be justified more rigorously and that yields estimators of precision that take into account the

uncertainty associated with imputation is required.

In this chapter, we consider methods for inference in the presence of missing data via multiple im-

putation when it is reasonable to assume that the missing data mechanism is MAR. These methods

are an alternative to the likelihood-based methods under MAR in Chapter 3.

Throughout this chapter, then, we assume that MAR holds without comment.

4.1 Preliminaries

As in Chapter 3, we assume that interest focuses on a parameter θ (or on components of θ) in a

postulated model for the full data pZ (z; θ). As reviewed in Section 3.1, if we had a sample of full data,

Z˜ , from N individuals, we could obtain the MLE θ̂F for θ by maximizing the corresponding likelihood

for the full data or, equivalently, solving in θ the score equation

N∑
i=1

SF
θ (Zi ; θ) = 0. (4.1)

By standard large sample theory, as presented in (3.7), we have that

θ̂F ·∼ N [θ0, N−1{N−1IF (Z˜ ; θ̂F )}−1] = N [θ0, {IF (Z˜ ; θ̂F )}−1], (4.2)

where

IF (Z˜ ; θ) = −
N∑

i=1

∂2

∂θ ∂θT log{pZ (Zi ; θ)} = −
N∑

i=1

∂

∂θT SF
θ (Zi ; θ). (4.3)

Thus, by (4.2), the full data observed information matrix in (4.3) with θ̂F substituted is an approx-

imation to the covariance matrix of the sampling distribution of θ̂F and characterizes the uncertainty

in the full data MLE.
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Consider again the selection model factorization of the joint density of (R, Z ) in (3.8), which under

the chosen full data model we can write as in (3.9), namely,

pR,Z (r , z; θ,ψ) = pR|Z (r |z;ψ)pZ (z; θ).

As discussed in Chapter 3, under the separability condition and MAR, we have ignorability of the

missingness mechanism. Under these conditions, we showed in (3.36) that

pZ |R,Z(R)
(z|r , z(r ); θ,ψ) = pZ |R,Z(R)

(z|r , z(r ); θ) = pZ |Z(r )
(z|z(r ); θ) = pZ(r̄ )|Zr (z(r̄ )|z(r ); θ); (4.4)

in particular, what we referred to in that chapter as the (frequentist) predictive distribution depends

only on θ and not on ψ. This will be important in the next section.

The idea behind multiple imputation is that one imputes missing data using (4.4) and then estimates

θ based on the imputed data and full data methods.

4.2 Fundamentals of multiple imputation

The idea of multiple imputation is due to Don Rubin, who proposed it in several papers in the late

1970s and then fleshed out the methodology in a book in the context of nonresponse in surveys

(Rubin, 1987). Since then, there has been an extensive body of work devoted to multiple imputation,

including a review by Rubin (1996). Here, we present informally the basic premise. In subsequent

sections, we discuss approaches to implementation in more detail.

BASIC IDEA OF MULTIPLE IMPUTATION: Suppose we have a sample of observed data (Ri , Z(Ri )i ),

i = 1, ... , N, and a full data model pZ (z; θ), and the goal is inference on θ. Multiple imputation involves

three basic steps or “tasks” (Rubin’s terminology):

1. For each individual i , the missing values are filled in, i.e., imputed, M times to create M “full”

data sets.

2. The full data analysis of interest is carried out on each of these M imputed data sets.

3. The results of the M analyses are combined into a single analysis that takes into account the

imputation.
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To accomplish Step 1, for each individual i = 1, ... , N, we sample at random from the conditional

(predictive) distribution in (4.4),

pZ |R,Z(r )
(z|Ri , Z(Ri )i ; θ̂

(m)), (4.5)

M times, m = 1, ... , M, where, for each m, θ̂(m) is some estimator for θ to be discussed later, to obtain

Z (m)
i , i = 1, ... , N, m = 1, ... , M.

We sometimes write Z (m)
i = Z (m)

i (θ̂(m)) to emphasize dependence on θ̂(m). Note that, because of (4.4),

there is no need to model the missingness mechanism,

This sampling based on (4.5) can be interpreted as follows. If Ri = 1˜ = (1, ... , 1)T , so that full data are

observed for individual i and thus Z(Ri )i = Zi , then

Z (m)
i = Z(Ri )i = Zi ;

i.e., for each m, the imputed full data for i are the observed full data.

For individuals with some components of the full data missing, sampling from (4.5) results in Z (m)
i

containing sampled values in the positions where components of the full data are missing and the

observed values in all other positions.

If the full data analysis is to estimate θ using maximum likelihood, to carry out Step 2, we obtain θ̂∗(m)

by solving in θ as in (4.1)
N∑

i=1

SF
θ (Z (m)

i ; θ) = 0, m = 1, ... , M. (4.6)

In Step 3, the multiple imputation estimator θ̂∗ for θ is then given by

θ̂∗ = M−1
M∑

m=1

θ̂∗(m), (4.7)

the average of the estimators obtained from each of the M imputed data sets.
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RATIONALE: The underlying logic behind multiple imputation is as follows.

If we knew the true value θ0 of θ, then we could generate random variables Zi (θ0), say, whose distri-

bution has density pZ (z; θ0) by first generating a random (Ri , Z(Ri )i ) from a distribution with density

pR,Z(R)(r , z(r ); θ0)

and then generating a random Zi (θ0) from the conditional distribution

pZ |R,Z(R)
(z|Ri , Z(r )i ; θ0).

For any i = 1, ... , N, then, Zi (θ0), would be iid with density

pZ (z; θ0).

The corresponding estimator found by solving in θ

N∑
i=1

SF
θ {Zi (θ0), θ) = 0

as in (4.1) would be an efficient MLE for the parameter θ.

This is essentially the idea behind multiple imputation; multiple imputation mimics the above data

generation process. Assuming that the model is correct, the observed data (Ri , Z(Ri )i ), i = 1, ... , N,

are generated by nature from the density pR,Z(R)(r , z(r ); θ0). However, because we do not know the

true value θ0 of θ, we derive some θ̂(m) (to be discussed later) that we believe is a reasonable estimator

for θ and then generate Z (m)
i (θ̂(m)) from the conditional density

pZ |R,Z(R)
(z|Ri , Z(r )i ; θ̂(m)).

4.3 Rubin’s variance estimator

The reason that multiple imputation was proposed by Rubin (instead of creating only one imputed

data set) was because the multiple imputations yield an intuitive estimator for the sampling variation

in the imputation estimator θ̂∗ for θ. Recall from Chapter 2 that ad hoc imputation approaches are

generally applied as if the imputed data are observed full data and the usual formulæ for standard

errors are used, so that there is no accounting for the imputation in assessment of uncertainty.

86



CHAPTER 4 ST 790, MISSING DATA

To make inference on θ, we require an approximation to the sampling distribution of θ̂∗. If

N1/2(θ̂∗ − θ0) L−→ N (0,Σ∗), (4.8)

then the estimator for Σ∗ proposed by Rubin is given by

Σ̂∗ = M−1
M∑

m=1

{
−N−1

N∑
i=1

∂

∂θT SF
θ (Z (m)

i ; θ̂∗(m))

}−1

+
(

M + 1
M

)
(M − 1)−1

M∑
m=1

N(θ̂∗(m) − θ̂∗)(θ̂∗(m) − θ̂∗)T .

(4.9)

Now (4.8) implies that

θ̂∗
·∼ N (θ0, N−1Σ̂∗), (4.10)

so that, from (4.9), an estimator for the sampling covariance matrix of θ̂∗ is

N−1Σ̂∗ = M−1
M∑

m=1

{
−

N∑
i=1

∂

∂θT SF
θ (Z (m)

i ; θ̂∗(m))

}−1

+
(

M + 1
M

)
(M − 1)−1

M∑
m=1

(θ̂∗(m) − θ̂∗)(θ̂∗(m) − θ̂∗)T .

(4.11)

The expression in (4.11) has intuitive appeal.

• The first term is the average of estimators for the full data approximate covariance matrices of

the θ̂∗(m) using the inverses of the full data observed information matrices, as in (4.3).

• The second term is the sample covariance matrix of the θ̂∗(m), m = 1, ... , M, multiplied by a finite

M correction factor.

The expression (4.11) (or equivalently (4.9)) is referred to as Rubin’s variance estimator. Standard

errors for the components of θ̂∗ can be obtained from (4.11) in the usual way.

Thus, the appeal of multiple imputation is that, if the full data estimator for θ and a large sample

approximation to its sampling covariance matrix are easy to compute, or if off-the-shelf software

for doing so exists, then inference on θ when some data are missing is also “easy.” Moreover, the

estimator and the form of its approximate covariance estimator are intuitive.

4.4 Proper versus improper imputation

There are two types of imputation schemes that can be used to implement Step 1, improper and

proper imputation.
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IMPROPER IMPUTATION: With improper imputation, we start with an initial estimator for θ, θ̂(init),

say, that is obtained in some fashion from the observed data and that is consistent and asymptoti-

cally normal, i.e.,

N1/2(θ̂(init) − θ0) L−→ N{0,Σ(init)(θ0)}. (4.12)

In Step 1, for each m = 1, ... , M, we draw

Z (m)
i (θ̂(init)), i = 1, ... , N

from the conditional distributions with conditional densities

pZ |R,Z(R)
(z|Ri , Z(Ri )i ; θ̂

(init)), i = 1, ... , N.

Note that θ̂(init) is used for all m = 1, ... , M.

The multiple imputation estimator θ̂∗ is then obtained following (4.6) by solving in θ

N∑
i=1

SF
θ {Z

(m)
i (θ̂(init)); θ} = 0, m = 1, ... , M

to yield θ̂∗(m) (Step 2 ), m = 1, ... , M, and substituting the θ̂∗(m) in (4.7). (Step 3 ).

PROPER OR BAYESIAN IMPUTATION: With proper or Bayesian imputation, the Z (m)
i are gener-

ated taking a Bayesian perspective. From a Bayesian point of view, the parameter θ is regarded as

random. Accordingly, the Bayesian approach to Step 1 is to sample Z (m)
i , m = 1, ... , M, for individual

i from the posterior (Bayesian ) predictive distribution

pZ |R,Z(R)
(z|Ri , Z(Ri )i ) =

∫
pZ |R,Z(R)

(z|Ri , Z(Ri )i ; θ) pθ|R,Z(R)
(θ|Ri , Z(Ri )i ) dν(θ). (4.13)

In (4.13), pθ|R,Z(R)
(θ|R, Z(R)) is the posterior density of θ given the observed data.

From (4.13), then, to implement proper imputation in Step 1, we need to specify a prior distribution

for θ from which the posterior distribution for θ can be obtained using Bayes’ rule. Specifically, given

a prior density pθ(θ) for θ,

pθ|R,Z(R)
(θ|R, Z(R)) =

pR,Z(R)(R, Z(R); θ) pθ(θ)∫
pR,Z(R)(R, Z(R); θ) pθ(θ) dν(θ)

.
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Step 1 can then be implemented as follows. For each individual i = 1, ... , N, for each m = 1, ... , M

(i) Generate θ(m) from the posterior distribution

pθ|R,Z(R)
(θ|Ri , Z(Ri )i ).

(ii) Conditional on θ(m), obtain Z (m)
i (θ(m)) by sampling from

pZ |Ri ,Z(R)
(z|Ri , Z(Ri )i ; θ

(m)).

The resulting Z (m)
i (θ(m)), i = 1, ... , N, m = 1, ... , M, are draws from the posterior predictive distribution

in (4.13).

As with improper imputation, the multiple imputation estimator θ̂∗ is then obtained by solving in θ

N∑
i=1

SF
θ {Z

(m)
i (θ(m)); θ} = 0, m = 1, ... , M,

to yield θ̂∗(m) (Step 2 ), m = 1, ... , M, and substituting the θ̂∗(m) in (4.7). (Step 3 ).

REMARKS:

• In improper imputation, then, Step 1 is carried out by fixing θ at some initial estimator θ̂(init),

whereas in proper imputation, Step 1 involves sampling θ from its posterior distribution given

the observed data.

• Both proper and improper multiple imputation estimators lead to consistent, asymptotically nor-

mal estimators θ̂∗ for θ.

• As we will see in the next section, Rubin’s variance estimator Σ̂∗ given by (4.9) is a consistent

estimator for the asymptotic covariance matrix of a proper multiple imputation estimator for θ

but will be an underestimate for an improper multiple imputation estimator.

• The logic behind Bayesian proper imputation seems a bit circular. In general, under the

Bayesian paradigm, under suitable regularity conditions and choice of prior distribution for θ,

the posterior mean or mode of θ is generally an efficient estimator for θ.

Using proper imputation, we draw from the posterior distribution of θ, the mean of which is

already an efficient estimator for θ. After imputing M data sets and carrying out Steps 2 and 3,

we end up with an estimator for θ that is no longer efficient, although it can be shown that the

loss of efficiency goes to zero as M increases. We discuss this further in the next section.
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4.5 Asymptotic results

Important insights regarding the differences between improper and proper imputation can be gained

by examining the properties of the resulting estimators for θ from a large-sample (frequentist) point

of view. In this section, we state several results without proof; much of the development behind these

results is due to Wang and Robins (1998) and Robins and Wang (2000) and is presented in detail in

Chapter 14 of Tsiatis (2006).

As reviewed in Section 3.1, if we had full data, the MLE θ̂F for θ is fully efficient, with asymptotic

covariance matrix {IF (θ0)}−1, where IF (θ0) is the full data expected information matrix. In contrast,

with observed data, as discussed in Section 3.3, from (3.29), the MLE θ̂ is the efficient observed data

estimator, with asymptotic covariance matrix {I(θ0)}−1, where I(θ0) is the observed data expected

information matrix.

Of course, the full data MLE is relatively more efficient than the observed data MLE, because there is

more information available with full data than there is when some data are missing. This is reflected

by the fact that

IF (θ0)− I(θ0) (4.14)

is nonnegative definite or, equivalently, with IF (θ0) and I(θ0) both positive definite, that

{I(θ0)}−1 − {IF (θ0)}−1

is nonnegative definite. From Section 3.4, that the expression (4.14) is nonnegative definite follows

from the missing information principle presented in (3.68), and (4.14) is often called the missing

information, as it reflects the information that is lost due to missing data.

We now consider the large sample properties of imputation estimators.

ASYMPTOTIC RESULTS FOR IMPROPER IMPUTATION ESTIMATOR: For improper imputation us-

ing an initial estimator θ̂(init) with asymptotic covariance matrix Σ(init)(θ0) as in (4.12), denote the final

estimator for θ from Step 3 by θ̂∗(improper ).
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Then it can be shown that

N1/2(θ̂∗(improper ) − θ0) L−→ N (0,Σ∗(improper )),

where

Σ∗(improper ) = {IF (θ0)}−1 +
(

M + 1
M

)
{IF (θ0)}−1{IF (θ0)− I(θ0)}{IF (θ0)}−1

+{IF (θ0)}−1{IF (θ0)− I(θ0)}Σ(init){IF (θ0)− I(θ0)}{IF (θ0)}−1 (4.15)

Under these conditions, the large sample behavior of Rubin’s variance estimator Σ̂∗ given in (4.9)

can also be deduced. Here, both terms in (4.9) are based on using Z (m)
i = Z (m)

i (θ̂(init)). Then Rubin’s

variance estimator Σ̂∗ converges as N →∞ to

Σ∗(Rubin) = {IF (θ0)}−1 +
(

M + 1
M

)
{IF (θ0)}−1{IF (θ0)− I(θ0)}{IF (θ0)}−1, (4.16)

which is equal to the first two terms in the expression for Σ∗(improper ) in (4.15). Thus, comparing (4.16)

to (4.15), it is clear that Rubin’s variance estimator used with improper imputation underestimates

the true asymptotic variance of the improper imputation estimator θ̂∗(improper ).

Accordingly, if one were to carry out improper imputation and use Rubin’s variance estimator, the

resulting inferences would be optimistic, failing to account faithfully for the true extent of uncertainty

involved.

SORT-OF PROPER IMPUTATION: Another strategy for multiple imputation that can be viewed as

somewhere between improper and fully Bayesian proper imputation is as follows.

Instead of fixing θ̂(init) for each m = 1, ... , M, suppose that we randomly draw θ̂(m) from a

N (θ̂(init), Σ̂(init)) (4.17)

distribution, where Σ̂(init) is a consistent estimator for the true asymptotic covariance matrix Σ(init) of

θ̂(init). By doing so, we are roughly drawing from the posterior distribution in an asymptotic sense; for

large N and certain choices of prior distribution for θ, there is a correspondence between the posterior

and asymptotic distributions.

We refer to the resulting multiple imputation estimator from Step 3 as θ̂∗(proper ).
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It can be shown that

N1/2(θ̂∗(proper ) − θ0) L−→ N (0,Σ∗(proper )),

where

Σ∗(proper ) = {IF (θ0)}−1 +
(

M + 1
M

)
{IF (θ0)}−1{IF (θ0)− I(θ0)}{IF (θ0)}−1

+
(

M + 1
M

)
{IF (θ0)}−1{IF (θ0)− I(θ0)}Σ(init){IF (θ0)− I(θ0)}{IF (θ0)}−1. (4.18)

Comparing (4.18) to (4.15) shows that the asymptotic covariance matrix of θ̂∗(proper ) is actually larger

in the sense of nonnegative definiteness than that of θ̂∗(improper ), although the difference converges to

zero as M →∞.

Under these conditions, it turns out that Rubin’s variance estimator (4.9) converges to Σ∗(proper ),

so that it is a valid estimator for the asymptotic covariance matrix of the (sort-of ) proper imputation

estimator θ̂∗(proper ). This is in contrast to its use with improper imputation, where it is an underestimate,

as presented above.

REMARKS:

• It is possible to derive consistent estimators for the asymptotic covariance matrix of the improper

imputation estimator θ̂∗(improper ); see Chapter 14 of Tsiatis (2006). However, these have forms

that are more difficult than that of Rubin’s estimator and are thus not appealing for practical use.

• If the initial estimator θ̂(init) is itself asymptotically efficient; e.g., if θ̂(init) is the observed data MLE

for θ or the posterior mean of θ given the observed data, then

N1/2(θ̂(init) − θ0) L−→ N [0, {I(θ0)}−1].

It can be shown that, substituting {I(θ0)}−1 for Σ(init) in the expression for Σ∗(proper ) in (4.18),

Σ∗(proper ) = {I(θ0)}−1 + M−1[{I(θ0)}−1 − {IF (θ0)}−1] (4.19)

(try it). In this case, (4.19) shows that carrying out proper multiple imputation starting with an

efficient initial estimator entails a loss of efficiency reflected by the term

M−1[{I(θ0)}−1 − {IF (θ0)}−1]

relative to having just used the initial estimator.

This seems a bit odd but is what proper Bayesian imputation implies.
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INEFFICIENT INITIAL ESTIMATOR: What happens if instead we start with an inefficient but possibly

easy-to-compute estimator θ̂(init)?

Under these conditions, it can be shown that the resulting improper or proper multiple imputation

estimator is asymptotically equivalent to the one-step updated EM algorithm estimator.

To see what we mean by this, recall from Section 3.3 that the observed data MLE θ̂ can be expressed

as the solution to the observed data score equation given in (3.38); namely, θ̂ satisfies

N∑
i=1

Sθ(Ri , Z(Ri )i ; θ̂) =
N∑

i=1

E
θ̂

{
SF
θ (Zi ; θ̂)|Ri , Z(Ri )i

}
= 0, (4.20)

where the equality in (4.20) follows from (3.33).

The EM algorithm is an iterative process for finding the MLE and thus solving (4.20). In Section 3.4,

we characterized the EM in the classical way as an iterative maximization, but it can be cast equiva-

lently as an iterative process involving solving the observed data score equation. That is, if θ(t) is the

t th iterate, then the (t + 1)th iterate satisfies

N∑
i=1

Eθ(t)

{
SF
θ (Zi ; θ(t+1))|Ri , Z(Ri )i

}
= 0. (4.21)

Ordinarily, we would iterate (4.21) to convergence to obtain the observed data MLE, but we can

consider each successive iterate itself as an estimator for θ.

Thus, by one-step updated EM algorithm estimator, we mean the estimator θ̂(em,1), say, satisfying

N∑
i=1

E
θ̂(init)

{
SF
θ (Zi ; θ̂(em,1))|Ri , Z(Ri )i

}
= 0.

In fact, writing the t th iterate as an estimator θ̂(em,t), because as t →∞, the EM algorithm converges

(under regularity conditions) to the observed data MLE, which is asymptotically efficient, we have that

N1/2(θ̂(em,t) − θ0) L−→ N (0,Σ(em,t)), where Σ(em,t) → {I(θ0)}−1 as t →∞. (4.22)

In Theorem 14.5 of Tsiatis (2006), it is shown that the asymptotic distribution of the multiple imputation

estimator as M →∞ is the same as that of the one-step EM algorithm estimator. The result in (4.22)

thus suggests another multiple imputation strategy. After M imputations using θ̂(init) (improper or

proper) to obtain the imputation estimator θ̂∗(1), say, restart the imputation process, now using θ̂∗(1)

as the initial estimator in the imputations. By continuing this process, theoretically, as suggested by

(4.22), we can iterate toward a fully efficient imputation estimator.
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To implement such a strategy, M must be chosen sufficiently large to ensure that each successive

iterate is relatively more efficient than the previous one. As the process converges toward efficiency,

M must be made increasingly larger.

SUMMARY: After this discussion of the properties of multiple imputation estimators, this general

approach may not seem as attractive as it may have at the outset. However, from a practical point of

view, multiple imputation has some nice features, discussed in the next several sections.

4.6 Imputation from a multivariate normal distribution

IMPUTER’S MODEL VERSUS ANALYST’S MODEL: Our development up to now has assumed that

the model that is used to draw the imputations is the same as that to be used to analyze the data.

The term “congenial,” coined by Meng (1994), has been used to describe the situation where the

models used for imputation and analysis are compatible in this sense.

However, for general problems, it may not always be feasible or convenient to use congenial models,

because it may be difficult to generate imputations in the context of a complex full data model. This

has led to examination of performance of multiple imputation methods when the models are not

congenial ; that is, as it is often portrayed in the literature, when the “imputer’s model” differs from

the “analyst’s model.”

In particular, suppose that imputation is carried out assuming that the full data are multivariate

normally distributed. Specifically, for Z = (Z1, ... , ZK ), where each component Zk , k = 1, ... , K , is of

dimension pk , say, if we interpret Z as a vector of dimension (P×1), P =
∑K

k=1 pk , then we mean that

we assume Z is P-variate normal and treat each scalar component as either observed or missing.

It turns out, not surprisingly, that under this condition imputation of missing data is relatively easily to

implement, as we demonstrate shortly. Here, then, we impute missing data Z (m)
i by generating from

the conditional density

pZ |R,Z(R)
(z|Ri , Z(Ri )i , ξ)

that arises from assuming (possibly wrongly) that Z is a multivariate normal as described above,

indexed by mean and covariance parameters ξ. Of course, if the model for the full data pZ (z; θ)

assumed by the analyst is not multivariate normal, then there is nothing to suggest that the resulting

multiple imputation estimator θ̂∗ need be a “good” estimator for θ.
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Interestingly, it has been shown via extensive numerical studies that, if the proportion of missing data

is not great, this approach can lead to reasonable results, even if missing components of Z are not

continuous but are discrete/categorical. Schafer (1997) offers extensive discussion.

Accordingly, available software for multiple imputation, such as SAS proc mi and R packages such

as norm, amelia, or mice, base imputation fully or in part on a multivariate normal model.

We demonstrate how imputation can be carried out assuming multivariate normality first in the case

where missingness is monotone.

MONOTONE MISSINGNESS: For simplicity, consider the simple longitudinal situation where a scalar

outcome Yj is collected at times tj , j = 1, ... , T , and assume that the full data are

Z = (Y1, ... , YT ). (4.23)

As usual, let D = j + 1 correspond to dropout at time tj+1, so that (Y1, ... , Yj ) is observed and

(Yj+1, ... , YT ) is missing, j = 1, ... , T , and thus Z(D) = (Y1, ... , Yj ); and D = T + 1 means Z(D) = Z .

Suppose that, for the purpose of imputation, we assume that Z (interpreted as the (T × 1) vector

Y = (Y1, ... , YT )T as above) is distributed as multivariate normal. We emphasize that the full data

model pZ (z; θ) for Z of interest may not be multivariate normal.

A T -variate normal distribution can be specified fully in terms of a (T × 1) mean vector and T (T +

1)/2 distinct variance and covariance parameters, for a total of T + T (T + 1)/2 parameters. For our

purposes, it is convenient to parameterize the T -variate normal instead in terms of a different set of

T + T (T + 1)/2 parameters as follows. If we take

Y1 ∼ N (α01,σ2
1)

...

Yj |Y1, ... , Yj−1 ∼ N (α0j + α1jY1 + · · · + αj−1,jYj−1,σ2
j ) (4.24)

...

YT |Y1, ... , YT−1 ∼ N (α0T + α1T Y1 + · · · + αT−1,T YT−1,σ2
T ),

then it follows that Y is multivariate normal with mean vector and covariance matrix determined by

the T (T + 1)/2 + T parameters in

ξ = (αT
1 , ... ,αT

T ,σ2
1, ... ,σ2

T )T ,

where αj = (α0j ,α1j ... ,αj−1,j )T , j = 1, ... , T (convince yourself).
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To facilitate imputation, the multivariate normal model in (4.24) is first fitted to the observed data

(Di , Z(Di )i ), i = 1, ... , N, by maximum likelihood under MAR to estimate ξ, and then the estimates are

used in a scheme to generate imputed data; here, we describe a proper imputation approach.

To obtain the MLE for ξ under the (imputer’s ) model (4.24), note that the likelihood contribution for a

single observation (D, Z(D)) under MAR, suppressing the i subscript, can be written as

T∏
q=1

{
pY1,...,Yq (Y1, ... , Yq;α1, ... ,αq,σ2

1, ... ,σ2
q)
}I(D=q+1)

(4.25)

=
T∏

q=1


q∏

j=1

pYj |Y1,...,Yj−1
(Yj |Y1, ... , Yj−1;αj ,σ2

j )


I(D=q+1)

, (4.26)

where the densities in (4.25) are multivariate normal as indicated, and the conditional densities in

(4.26) correspond to the conditional normal specifications in (4.24) .

Interchanging the order of the products in (4.26), we obtain

T∏
j=1


T∏

q=j

pYj |Y1,...,Yj−1
(Yj |Y1, ... , Yj−1;αj ,σ2

j )


I(D=q+1)

=
T∏

j=1

{
pYj |Y1,...,Yj−1

(Yj |Y1, ... , Yj−1;αj ,σ2
j )
}I(D≥j+1)

. (4.27)

Thus, from (4.27), for a sample of iid data (Di , Z(Di )i ), i = 1 ... , N, the likelihood can be written as

T∏
j=1

 ∏
i :Di≥j+1

pYj |Y1,...,Yj−1
(Yij |Yi1, ... , Yi ,j−1;αj ,σ2

j )

 . (4.28)

From (4.28), because (αj ,σ2
j ) separate in the likelihood for j = 1, ... , T , the MLEs (α̂j , σ̂2

j ), j = 1, ... , T ,

under this multivariate normal model can be obtained separately for each j by maximizing in (αj ,σ2
j )

∏
i :Di≥j+1

pYj |Y1,...,Yj−1
(Yij |Yi1, ... , Yi ,j−1;αj ,σ2

j ),

and, moreover, the estimators for each j = 1, ... , T are asymptotically independent.

Because of the formulation (4.24), for each j = 1, ... , T , α̂j is the ordinary least squares (OLS) esti-

mator derived using all the individuals i for whom Y1, ... , Yj are observed.
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That is, α̂j is obtained by fitting by OLS the model

Yij = α0j + α1jYi1 + · · · + αj−1,jYi ,j−1 + σjεij , εij ∼ N (0, 1)

to the data for all i for whom Di ≥ j + 1, where the εij are iid. The estimator σ̂2
j is obtained as

σ̂2
j = (Nj − j)−1

∑
i :Di≥j+1

(Yij − α̂0j − α̂1jYi1 − · · · − α̂j−1,jYi ,j−1)2, Nj =
N∑

i=1

I(Di ≥ j + 1).

Armed with these results, proper imputation can be implemented as follows. For each m = 1, ... , M:

(i) Draw ξ(m) from the posterior distribution. Namely, for j = 1, ... , T , obtain

σ2(m)
j = σ̂2

j (Nj − j)/q,

where q is a random draw from a χ2
Nj−j distribution, and

α(m)
j = α̂j + σ(m)

j (ST
j Sj )−1/2Uj , j = 1, ... , T ,

where Sj is the usual design matrix corresponding to the j th regression implied by (4.24), Uj ∼

N (0, Ij ) (iid), and Ij is a (j × j) identity matrix.

(ii) For each i = 1, ... , N, impute

Z (m)
i (ξ(m)) = {Yi1(ξ(m)), ... , YiT (ξ(m))},

where, for i such that Di = j + 1,

– For q = 1, ... , j , Yiq(ξ(m)) = Yiq, the observed outcome

– Otherwise, generate random deviates

Y (m)
i ,j+1(ξ(m)) = α(m)

0,j+1 + α(m)
1,j+1Yi1(ξ(m)) + · · · + α(m)

j ,j+1Yij (ξ(m)) + σ(m)
j+1 ε

(m)
i ,j+1,

Y (m)
ir (ξ(m)) = α(m)

0r + α(m)
1r Yi1(ξ(m)) + · · · + α(m)

r−1,r Y
(m)
i ,r−1(ξ(m)) + σ(m)

r ε(m)
ir , r = j + 2, ... , T ,

where ε(m)
ir , r = j + 1, ... , T , are iid standard normal; and Yiq(ξ(m)) = Yiq, q = 1, ... , j .

The foregoing scheme implements Step 1 under the assumption of multivariate normality. Steps 2

and 3 would then be carried out by implementing the intended full analysis under actual assumed

full data model on each of the M imputed data sets to obtain θ̂∗(m), m = 1, ... , M, and combining the

results.
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NONMONOTONE MISSINGESS: We now consider how imputation can be carried out assuming

multivariate normality for imputation in the more difficult case where the missingness pattern is non-

monotone. Here, one can use Markov chain Monte Carlo (MCMC) methods to impute missing

data from the (Bayesian) posterior predictive distribution and thus implement Rubin’s fully proper

(Bayesian) imputation. Thus, we need a means of making random draws from the posterior predic-

tive distribution given in (4.13).

GIBBS SAMPLING: Gibbs sampling is the most straightforward and well known form of MCMC and

can be used for this purpose. We first give a quick, generic overview of the basic procedure and

premise, and then describe how Gibbs sampling can be used for proper imputation.

Suppose that a random vector W is partitioned as (W1, ... , WK ). We would like to sample from the

distribution of W with density pW (w), say. The Gibbs sampling technique involves sampling iteratively

from the so-called full conditional distributions; i.e., the conditional distributions of each component

of W given all the others.

In particular, given the value of W sampled at iteration t , say,

W (t) = (W (t)
1 , ... , W (t)

K ),

the value at step t + 1, W (t+1) = (W (t+1)
1 , ... , W (t+1

K ), is obtained by successively drawing from the

distributions, in obvious notation

W (t+1)
1 ∼ pW1|W2,...,WK

(w1|W (t)
2 , ... , W (t)

K )

W (t+1)
2 ∼ pW2|W1,W3,...,WK

(w2|W (t+1)
1 , W (t)

3 , ... , W (t)
K )

...

W (t+1)
K ∼ pWK |W1,...,WK−1

(wK |W (t+1)
1 , ... , W (t+1)

K−1 )

It can be shown that the sequence {W (t), t = 0, 1, 2, ...} forms a Markov chain that, under mild

conditions, has stationary distribution equal to pW (w); that is,

W (t) L−→W as t →∞.

PROPER IMPUTATION VIA GIBBS SAMPLING: The foregoing formulation can be used to imple-

ment proper imputation as follows. We present this first in the ideal case where the imputer’s and

analyst’s models are the same, and then demonstrate in the case when these models need not be

the same.
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Here, we wish to make random draws for each individual i = 1, ... , N from the posterior predictive

distribution. That is, if individual i has Ri = r , we would like to draw from (4.13). As we showed in

Chapter 3, under MAR, from (3.48), we have

pZ |Z(r )
{(Z(r )i , z(r̄ ))|Z(r )i ; θ} = pZ |R,Z(R)

{(Z(r )i , z(r̄ ))|Ri = r , Z(r )i ; θ} = pZ(r̄ )|Z(r )
(z(r̄ )|Z(r )i ; θ).

Thus, the posterior predictive distribution from which we wish to sample is

pZ(r̄ )|Z(r )
(z(r̄ )|Z(r )i ) = pZ |R,Z(R)

{(Z(r )i , z(r̄ ))|Ri = r , Z(r )i}. (4.29)

Drawing directly from (4.29) can be difficult. However, viewing θ as a random vector under the

Bayesian point of view, it may be possible to generate random draws successively from

pZ(r̄ )|Z(r )
(z(r̄ )|Z(r )i ; θ) and then (4.30)

pθ|Z(r ),Z(r̄ )
(θ|Z(r )i , z(r̄ )). (4.31)

Identifying for individual i

W = (Z(r̄ )i , θ),

if this were possible, we could implement a Gibbs sampling scheme to do this by generating succes-

sive iterates; namely, given the t th iterate (Z (t)
(r )i , θ

(t)), obtain the (t + 1)th iterate as, from (4.30) and

(4.31),

Z (t+1)
(r̄ )i ∼ pZ(r̄ )|Z(r );θ(z(r )|Z(r )i ; θ(t))

θ(t+1) ∼ pθ|Z(r ),Z(r̄ )
(θ|Z(r )i , Z (t+1)

(r̄ )i ).

As in the generic demonstration, the sequence (Z (t)
(r̄ )i , θ

(t)) for t = 0, 1, 2, ... generated this way would

converge in distribution to a random (Z(r̄ )i , θ) from the conditional distribution

pZ(r̄ )i ,θ|Z(r )
(z(r̄ ), θ|Z(r )i ).

Thus, with t sufficiently large, Z (t)
(r̄ )i would be, roughly speaking, a draw from the posterior predictive

distribution

pZ(r̄ )|Z(r )
(z(r̄ )|Z(r )i )

in (4.29).

Accordingly, this technique could be used to implement proper imputation, where, for each i = 1, ... , N,

the draws Z(r̄ )i obtained after a large number of iterations t used to “fill in” the missing values. To do

so, we would need a starting value θ(0) and a way to generate random draws from (4.30) and (4.31).
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PROPER IMPUTATION USING A MULTIVARIATE NORMAL IMPUTER’S MODEL We now demon-

strate how this would be implemented when, as above, we assume that the full data are multivariate

normally distributed. Again consider the situation where the full data Z are analogous to (4.23),

Z = (Y1, ... , YK ),

say, where each Yk is a real-valued, normally-distributed outcome. This might correspond to a lon-

gitudinal situation where K = T or more generally to any situation where K variables ideally are to

be observed on all individuals. Suppose that components of Z can be missing in an intermittent,

nonmonotone fashion.

Writing Y = (Y1, ... , YK )T , then, for the purposes of imputation, we assume

Y ∼ N (µ,Σ), µ = (µ1, ... ,µK )T , (4.32)

and Σ is a (K × K ) covariance matrix. Let ξ denote collectively (µ,Σ).

Consider a fixed r = (r1, ... , rK )T , and rearrange and partition Y as (Y T
(r ), Y T

(r̄ ))
T , so into observed and

unobserved components. For individual i for whom Ri = r , under this normal imputer’s model, from

(4.30) and (4.31), we wish to draw successively from

pY(r̄ )|Y(r );ξ(y(r̄ )|Y(r )i ; ξ) and then (4.33)

pξ|Y(r ),Y(r̄ )
(ξ|Y(r )i , y(r̄ )). (4.34)

It turns out that straightforward methods are available for making draws from (4.33) based on the

properties of the conditional distributions a multivariate normal distribution and from (4.34) under

conjugate prior distributions, as follows.

Partition µ and Σ analogous to the partition of Y as

µ = (µT
(r ),µ

T
(r̄ ))

T and Σ =

 Σ(rr ) Σ(r r̄ )

Σ(r̄ r ) Σ(r̄ r̄ )

 .

Then a well-known result for the multivariate normal distribution is that the conditional distribution

of Y(r̄ ) given Y(r ) is also multivariate normal with mean

E(Y(r̄ )|Y(r )) = µ(r̄ ) + Σ(r̄ r )Σ
−1
(rr )(Y(r ) − µ(r )), (4.35)

and covariance matrix

Σ(r̄ r̄ ) − Σ(r̄ r )Σ
−1
(rr )Σ(r r̄ ). (4.36)
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For individual i for whom Ri = r , making a random draw from (4.33) involves drawing from the multi-

variate normal distribution with mean (4.35) and and covariance matrix (4.36). That is, in the Gibbs

sampling scheme, given the t th iterate (Y (t)
(r̄ )i , ξ

(t)), obtain the (t + 1)th iterate as

Y (t+1)
(r̄ )i ∼ pY(r̄ )|Y(r );ξ(y(r̄ )|Y(r )i ; ξ(t)), (4.37)

where pY(r̄ )|Y(r )
(y(r̄ )|Y(r )i ; ξ(t)) in (4.37) is the multivariate normal density with, from (4.35) and (4.36),

mean

µ(t)
(r̄ ) + Σ(t)

(r̄ r )Σ
(t)−1
(rr ) (Y(r )i − µ

(t)
(r ))

and covariance matrix

Σ(t)
(r̄ r̄ ) − Σ(t)

(r̄ r )Σ
(t)−1
(rr ) Σ(t)

(r r̄ ).

We now discuss how to make random draws from (4.34) to obtain the iterate ξ(t). Note that (4.34) is

the posterior density of ξ given the full data, where, here, the full data are taken to be multivariate

normal as in (4.32).

In Bayesian inference, the simplest way to proceed is to choose a class of prior distributions that

is conjugate to the likelihood function. A conjugate class has the property that any prior distribution

pξ(ξ), say, in the class leads to a posterior distribution pξ|Y (ξ|y ) in our case that is also in the class.

NORMAL INVERTED WISHART DISTRIBUTION: When Y is multivariate normal as in (4.32) and

both µ and Σ are unknown, the most natural conjugate class is that of the normal inverted Wishart

distribution.

The Wishart distribution is the multivariate generalization of the chi-square distribution. We now

define the Wishart and inverted Wishart distributions generically and then apply the results to the

problem at hand. If X is a (m × p) matrix whose rows are iid N (0,Λ−1) for (p × p) covariance matrix

Λ−1, then the matrix of sums of squares

A = X T X

is said to have a Wishart distribution, and we write

A ∼ W(m,Λ−1).

The parameter m is referred to as the degrees of freedom and Λ−1 as the scale.

If A ∼ W(m,Λ−1), then B = A−1 is said to have an inverted Wishart or inverse Wishart distribution,

which we write as

B ∼ W−1(m,Λ). (4.38)
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With Y multivariate normal as in (4.32) and ξ defined as above, we can define the normal inverted

Wishart prior and posterior for ξ as follows. Recall that we are viewing ξ, and thus µ and Σ, as

random. Suppose that, given Σ, µ is assumed to have a multivariate normal prior distribution

µ|Σ ∼ N (µ0, τ−1Σ), τ > 0, (4.39)

where µ0 is fixed and known, and

Σ ∼ W−1(m,Λ) (4.40)

as in (4.38) for fixed and known m and Λ. Then the resulting joint prior density for ξ can be written as

pξ(ξ) = pµ,Σ(µ,Σ) = pµ|Σ(µ|Σ) pΣ(Σ), (4.41)

where the densities in the rightmost expression in (4.41) are those of the distributions in (4.39) and

(4.40), respectively. Then ξ satisfying (4.41) is said to have a normal inverted Wishart distribution.

If we have iid data Y˜ = {Yi , i = 1, ... , N}, it can be shown that

pξ|Y˜(ξ|Y˜ ) = pµ,Σ|Y˜(µ,Σ|Y˜ ) = pµ|Σ,Y˜(µ|Σ, Y˜ ) pΣ|Y˜(Σ|Y˜ ), (4.42)

where the densities in (4.42) are such that

µ|Σ, Y˜ ∼ N (µ′0, (τ ′)−1Σ), Σ|Y˜ ∼ W−1(m′,Λ′),

τ ′ = τ + N, m′ = m + N, µ′0 =
(

N
τ + N

)
Y +

( τ

τ + N

)
µ0,

Λ′ =
{
Λ + NS +

(
τN
τ + N

)
(Y − µ0)(Y − µ0)T

}
,

and

Y = N−1
N∑

i=1

Yi , S = (N − 1)−1
N∑

i=1

(Yi − Y )(Yi − Y )T . (4.43)

The density in (4.42) is thus that of the posterior distribution given the full sample data that results

from adopting the joint prior density in (4.41).

When the result (4.42) is used in practice, one often uses a noninformative improper prior where

one lets τ → 0, m → −1, and Λ → 0. Under these conditions, the posterior distribution of ξ given

the full sample data in (4.42) becomes the normal inverted Wishart distribution with the densities in

(4.41) corresponding to

µ|Σ, Y˜ ∼ N (Y , N−1Σ), Σ|Y˜ ∼ W−1{N − 1, (NS)}. (4.44)
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Using a noninformative improper prior, one would use these results and (4.44) to generate the t th

iterate ξ(t) as follows. Suppose individual i , i = 1, ... , N, has Ri = ri , with corresponding r̄i . Having

obtained the t th iterates Y (t)
(r̄i )i

, say, for each i according to (4.37) (at the t th rather than (t + 1)th

iteration), form for each i

Y (t)
i = (Y T

(ri ), Y (t)T
(r̄i )i

)T . (4.45)

Write Y˜ (t) = {Y (t)
i , i = 1, ... , N}.

To obtain ξ(t), first draw random Σ(t) from

W−1{N − 1, (NS(t))}.

Many software packages have built-in functions implementing random sampling from an inverse

Wishart distribution. Alternatively, it is possible to do this directly, although it could be computa-

tionally intensive. Here, one would generate a {(N − 1)×K} matrix X , where each of the N − 1 rows

of X are iid draws from

N{0, (NS(t))−1},

and S(t) is the sample covariance matrix in (4.43) based on Y˜ (t). Then take

Σ(t) = (X T X )−1, µ(t) ∼ N (Y
(t)

, N−1Σ(t)),

where Y
(t)

is the sample mean in (4.43) based on Y˜ (t).

PROPER IMPUTATION SCHEME: We now summarize Step 1 of the proper multiple imputation

procedure using Gibbs sampling based on these results.

Begin with an initial estimator ξ(0) = (µ(0),Σ(0)). One possibility (implemented in SAS proc mi, for

example) is to use the observed data MLE obtained from the EM algorithm under the assumption of

multivariate normality of full data. Set t = 0.

Obtain Y (t+1)
(r̄i )i

for each i = 1, ... , N independently by sampling as in (4.37); that is, generate

Y (t+1)
(r̄i )i

∼ N{µ(t)
r̄i

+ Σ(t)
(r̄i ri )

(Σ(t)
(ri ri )

)−1(Y(ri ) − µ
(t)
ri

),Σ(t)
(r̄i r̄i )
− Σ(t)

(r̄i ri )
(Σ(t)

(ri ri )
)−1Σ(t)

(ri r̄i )
}. (4.46)

Form

Y (t+1)
i = (Y T

(ri ), Y (t+1)T
(r̄i )i

)T

as in (4.45), and construct

Y
(t+1)

, S(t+1),

the mean and sample covariance matrix in (4.43) based on Y˜ (t+1) = {Y (t+1)
i , i = 1, ... , N}.
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Then obtain ξ(t+1) = (µ(t+1),Σ(t+1)) by first drawing Σ(t+1) from

W−1{N − 1, (NS(t+1))}

and then obtaining

µ(t+1) ∼ N (Y
(t+1)

, N−1Σ(t+1)).

Set t = t + 1 and repeat.

One would iterate this process many times to form a (Markov) chain

Y˜ (t) = {Y (t)
i , i = 1, ... , N} for t = 1, 2, 3, ...

The M imputed data sets would then be taken as

Y˜ (t) for t = s, 2s, ... , Ms, (4.47)

where s is chosen to be sufficiently large that one feels confident that the Markov chain has stabilized

at the stationary distribution.

Multiple imputation Steps 2 and 3 would then be carried out based on the M imputed data sets

(4.47).

REMARKS:

• This approach to multiple imputation uses multivariate normal model for imputation and thus as-

sumes that all variables in the full data are jointly normally distributed. Even if the variables are

all continuous, they may have skewed distributions or otherwise be far from being normally dis-

tributed. It may be possible to transform such variables so that the assumption of approximate

normality is more tenable on the transformed scales.

• Most often, complex data sets involve both continuous and categorical variables, the latter of

which may be binary, unordered categorical, or ordered categorical. Clearly, such variables are

not normally distributed. One option is just to ignore this complication and hope for the best.

As we noted earlier, this may not perform as badly as one might think when the proportion of

missing data is not that great. In the next section, we discuss a multiple imputation strategy that

attempts to acknowledge and accommodate different types of variables.
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• If one in fact believes that the multivariate normal model is appropriate for the full data, then

the full data model pZ (z; θ) is a multivariate normal density. In this case, the parameter ξ in

the foregoing development and the parameter θ indexing the full data model of interest are one

in the same (or are one-to-one transformations of each other). As discussed at the end of

Chapter 3 in Section 3.6, inference on θ based on a fully Bayesian framework is an alternative

to the likelihood and multiple imputation methods we have discussed so far. The Gibbs sampling

scheme we have presented here in the context of facilitating proper multiple imputation could

also be used to implement a fully Bayesian analysis. Specifically, under these conditions, at

each iteration t , one obtains a Markov chain

ξ(t) = θ(t), t = 1, 2, 3, ...

This sequence will converge in distribution to a random θ from the conditional distribution of θ

given the observed data; that is, the posterior distribution of θ.

This suggests that inference on θ could be carried out by running a sufficiently large number s

iterations to feel that the Markov chain has stabilized and then taking a large sample θ(t), t ≥ s,

and using this sample to approximate the posterior distribution. As noted in Section 3.6, one

could then use the mean or mode of the sample as an estimator for θ and produce assess-

ments of uncertainty using the sample standard deviation and Bayesian credible intervals

constructed from the sample. A full treatment of the Bayesian approach is beyond our scope

here, but this example demonstrates the basic principles of how it might be implemented in

general for missing data problems.

4.7 Multivariate imputation by chained equations

As noted above, when the full data comprise both continuous and categorial variables, one strat-

egy is just to proceed as if all were continuous and approximately normal and generate imputations

from a multivariate normal distribution. An alternative approach to adopting an imputation model for

the entire joint distribution of the full data is to adopt a fully conditional specification (FCS), also

known as multivariate imputation by chained equations (MICE) (van Buuren, 2007; van Buuren

and Groothuis-Oudshoorn, 2011). This multiple imputation approach using chained equations has

gained considerable recent popularity.

This approach is rather ad hoc and involves an algorithm that proceeds as follows.
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BASIC IDEA: For simplicity, suppose again the full data are

Z = (Y1, ... , YK ),

where each component Yk of Z is a scalar that can be observed or missing, and let R = (R1, ... , Rk )T

as usual. The approach can be adapted to the case where each component Zk of Z is vector-valued

by viewing each element of Zk as a separate variable. Here, each component Yk can be a real-valued,

binary, or unordered or ordered categorical variable.

MICE is an ad hoc, practical approach to generating imputed data sets (so carrying out Step 1 of

multiple imputation) based on a set of imputation models, one for each variable with missing values.

Assume that the components of Z are ordered in some specific way; different orderings will produce

different results.

We first sketch the basic idea of the MICE algorithm, and then provide details on implementation. For

a sample of observed data, the algorithm works as follows:

• The algorithm is initialized by “filling in” all missing values for each individual by random sam-

pling from the observed values. That is, if Yk is missing for individual i , impute Yik by sampling

at random from the Yk values for those individuals in the data set for whom Yk is observed.

• The first variable with missing values for some individuals, Y1, say, is regressed on all other

variables Y2, ... , YK , restricting to individuals for whom Y1 is observed (R1 = 1). Y1 for individu-

als for whom Y1 is missing (R1 = 0) are imputed via simulated draws from the corresponding

posterior predictive distribution of Y1 (details to be discussed shortly).

• The next variable with missing values for some individuals, Y2, say, is regressed on all other

variables Y1, Y3, ... , YK , restricted to individuals for whom Y2 is observed and using the imputed

values for Y1 obtained in the previous step. Again, Y2 for individuals for whom Y2 is missing are

imputed by draws from the corresponding posterior predictive distribution of Y2.

• This scheme continues sequentially for all other variables with missing values for some indi-

viduals. This completes one cycle of the algorithm.

• This process for all variables is repeated for several cycles (e.g., 10 to 20) to stabilize the

result. This results in a single imputed data set.

• The entire procedure is carried out M times to yield M imputed data sets.
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The M imputed data sets can then be used in Steps 2 and 3 of multiple imputation.

The term chained equations thus refers to the successive regression equations (models) used in

the sequence for each cycle. The key feature of MICE is the ability to handle different variable

types (continuous, binary, categorical). Namely, the regression models used in the sequence can be

specified in accordance with the variable types, as we now demonstrate.

Consider the k th variable with missing values in the sequence, Yk , so that there are K − 1 other

variables to be used in the regression model for Yk , some of which are observed on all individuals

and others that have been imputed initially or in a previous cycle of the algorithm. For ease of

notation, denote these additional variables by X1, ... , XK−1. Note that the definition of X1, ... , XK−1

changes depending on k .

We describe how, in any cycle, Yk for each k ∈ {1, ... , K} with missing values would be imputed for

individuals for whom it is missing when Yk is continuous, binary, unordered categorical, or ordered

categorical. Suppose we are at the t th cycle.

CONTINUOUS YK : If Yk is continuous, the most common choice of model is a linear regression

model assuming Yk is normally distributed (perhaps on a transformed scale). The approach is

similar to that used in the case of monotone missingness discussed in Section 4.6.

Thus, consider the model

Yk = α0 + α1X1 + · · · + αK−1XK−1 + σε, ε ∼ N (0, 1). (4.48)

In (4.48) and all other models we specify below, if a variable X` is categorical, then it would be

included in the model via an appropriate dummy variable specification; for brevity, we suppress this

in the notation.

Using the data for individuals for whom Yk is observed; i.e., with i in the set {i : Rik = 1}, fit this model

using OLS (thus assuming observations are independent across i) to obtain α̂ = (α̂0, α̂1, ... , α̂K−1)T ,

and let

σ̂2 = (Nk − K )−1
∑

i :Rki =1

(Yik − α̂0 − α̂1Xi1 − · · · − α̂K−1Xi ,K−1)2,

where Nk is the number of individuals with Rk = 1.
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Then impute Yk for those individuals for whom it is missing; i.e., individuals i in the set {i : Rik = 0},

as follows, similar to the procedure used in the monotone missingness case discussed earlier. Obtain

σ2(t) = σ̂2(Nk − K )/q,

where q is a random draw from a χ2
Nk−K distribution, and

α(t) = α̂ + σ(t)(ST
k Sk )−1/2U,

where Sk is the usual design matrix corresponding to the regression model (4.48), and U ∼ N (0, Ik ).

Then obtain for each i in the set {i : Rik = 0} imputed values

Y (t)
ik = α(t)

0 + α(t)
1 Xi1 + · · · + α(t)

K−1Xi ,K−1 + σ(t)ui ,

where ui ∼ N (0, 1).

BINARY Yk : If Yk is binary, taking on values 0 or 1, the most common choice of model is the logistic

regression model

logit{pr(Yk = 1|X1, ... , XK−1;α)} = α0 + α1X1 + · · · + αK−1XK−1, (4.49)

where logit(p) = log{p/(1− p)}, and α = (α0,α1, ... ,αK−1)T .

Let α̂ be the MLE for α obtained using standard logistic regression software to fit (4.49) (e.g., SAS

proc logistic or R glm) based on the data for individuals for whom Yk is observed; i.e., with i in the

set {i : Rik = 1}. Let Σ̂ be the estimated asymptotic sampling covariance matrix for α̂ obtained from

the software.

Use a strategy similar to that used in “sort-of proper imputation” in (4.17), and obtain α(t) as a draw

from its approximate posterior distribution

N (α̂, Σ̂).

Then impute Yk for those individuals for whom it is missing; i.e., individuals i in the set {i : Rik = 0},

by generating Y (t)
ik as Bernoulli with success probability πik , where

πik = expit(α(t)
0 + α(t)

1 Xi1 + · · · + α(t)
K−1Xi ,K−1),

where expit(u) = eu/(1 + eu).
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UNORDERED CATEGORICAL Yk : If Yk is an unordered categorical variable taking on one of L

possible values (that have no natural ordering, such as “red,” “blue,” “green”), indexed by ` = 1, ... , L,

then a multinomial or polytomous logistic regression model is often used, which specifies

pr(Yk = `|X1, ... , XK−1;α) =
exp(α0` + α1`X1 + · · · + αK−1,`XK−1)

1 +
∑L−1

`′=1 exp(α0`′ + α1`′X1 + · · · + αK−1,`′XK−1)
, ` = 1, ... , L− 1.

(4.50)

In (4.50), then, the probabilities of being in each of L− 1 of the categories are modeled, with the Lth

category taken as the reference category, using the fact that the the probabilities for all L categories

must sum to one. Thus, in (4.50), there is a (K × 1) parameter vector α` = (α0`, ... ,αK−1,`)T for each

` = 1, ... , L−1, for a total of k (L−1) parameters, which we collect as α = (αT
1 , ... ,αT

L−1)T {K (L−1)×1}.

Model (4.50) can be fitted by maximum likelihood (based on the multinomial likelihood with these

probabilities) using standard software (e.g., SAS proc logistic or the multinom function in the

nnet R package). Using the data for individuals for whom Yk is observed; i.e., with i in the set

{i : Rik = 1}, obtain the MLE α̂ {K (L − 1) × 1} and its associated estimated asymptotic covariance

matrix Σ̂ {K (L− 1)× K (L− 1)}.

As for the binary case, use a strategy similar to that used in “sort-of proper imputation” in (4.17) and

obtain α(t) as a draw from its approximate posterior distribution

N (α̂, Σ̂).

Then impute Yk for those individuals for whom it is missing; i.e., individuals i in the set {i : Rik = 0},

by generating Y (t)
ik as multinomial with probabilities πi1, ... ,πiL corresponding to the categories 1, ... , L,

where

πi` =
exp(α(t)

0` + α(t)
1`Xi1 + · · · + α(t)

K−1,`Xi ,K−1)

1 +
∑L−1

`′=1 exp(α(t)
0`′ + α

(t)
1`′Xi1 + · · · + α(t)

K−1,`′Xi ,K−1)
, ` = 1, ... , L− 1,

πiL =
1

1 +
∑L−1

`′=1 exp(α(t)
0`′ + α

(t)
1`′Xi1 + · · · + α(t)

K−1,`′Xi ,K−1)
.

ORDERED CATEGORICAL Yk : If Yk is an ordered categorical or ordinal variable taking on one

of L possible values that have a natural ordering (e.g., “low,” “medium,” “high”), then a standard model

is the proportional odds or ordered logistic model, the usual form of which is

logit{pr(Yk ≤ `|X1, ... , XK−1;α)} = λ` − (α1X1 + · · · + αK−1XK−1), ` = 1, ... , L− 1, (4.51)

where λ1 < · · · < λL−1, and we define α = (λ1, ... ,λL−1,α1, ... ,αK−1)T . Models of the form (4.51)

can be fitted by maximum likelihood using standard software (e.g., SAS proc logistic or the polr

function in the R mass package).
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Using the data for individuals for whom Yk is observed; i.e., with i in the set {i : Rik = 1}, obtain

the MLE α̂ and its associated estimated asymptotic covariance matrix Σ̂. Then, as for the previous

models, obtain α(t) as a draw from its approximate posterior distribution

N (α̂, Σ̂),

and impute Yk for those individuals for whom it is missing; i.e., individuals i in the set {i : Rik = 0}, by

generating Y (t)
ik as multinomial with probabilities πi1, ... ,πiL corresponding to the ordered categories

1, ... , L, where

πi1 =
exp{λ(t)

1 − (α(t)
1 Xi1 + · · · + α(t)

K−1Xi ,K−1)}

1 + exp{λ(t)
1 − (α(t)

1 Xi1 + · · · + α(t)
K−1Xi ,K−1)}

,

πi` =
exp{λ(t)

` − (α(t)
1 Xi1 + · · · + α(t)

K−1Xi ,K−1)}

1 + exp{λ(t)
` − (α(t)

1 Xi1 + · · · + α(t)
K−1Xi ,K−1)}

−
exp{λ(t)

`−1 − (α(t)
1 Xi1 + · · · + α(t)

K−1Xi ,K−1)}

1 + exp{λ(t)
`−1 − (α(t)

1 Xi1 + · · · + α(t)
K−1Xi ,K−1)}

,

for ` = 2, ... , L,

πiL = 1−
exp{λ(t)

L−1 − (α(t)
1 Xi1 + · · · + α(t)

K−1Xi ,K−1)}

1 + exp{λ(t)
L−1 − (α(t)

1 Xi1 + · · · + α(t)
K−1Xi ,K−1)}

.

SUMMARY: The MICE algorithm is implemented in, for example, SAS proc mi using the fcs option

and the R package mice. We have sketched the overall approach to imputation here; more detail is

given in van Buuren (2007) and van Buuren and Groothuis-Oudshoorn (2011).

REMARK: The MICE/FCS approach is predicated on specification of full conditional models; that

is, in our example for each k , models for Yk as a function of all other variables. Clearly, it is virtually

impossible in general, for variables of mixed types, to specify an entire set of such models such that

they are all compatible. By this we mean that they all are consistent with a single joint distribution

specification for all variables.

Accordingly, there is no reason to expect, as is the case with MCMC methods based on a compatible

conditional models derived from a joint distributional specification, that a sequence of imputed values

generated by the algorithm need converge to anything.

We thus emphasize again that the algorithm is ad hoc, although it seems to work well in practice.
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4.8 Discussion

Multiple imputation is a popular approach to handling missing data, owing to the fact that “filling in”

missing values has great practical appeal. We reiterate that multiple imputation as presented in this

chapter is predicated on the validity of the MAR assumption.

The original literature on multiple imputation suggested that M = 3 to 5 imputed data sets are all that

may be needed to obtain good results. This was based on a formula derived by Rubin for calculating

the relative efficiency of estimation of θ when using M imputed data sets compared to using an

infinite number of imputed data sets under a fraction F of missing information, given by

1/(1 + F/M).

This formula suggests that. even with 50% of the information in the intended full data missing, one

can attain 91% relative efficiency with M = 5 and 95% with M = 10. However, this pertains only to the

quality of the multiple imputation estimator for θ itself ; it does not address the quality of assessment

of uncertainty via Rubin’s variance estimator and, for example, confidence intervals and p-values

derived using it. Studies of this issue by simulation have shown that a much larger number M of

imputed data sets should be used to obtain accurate estimators of uncertainty. Recommendations

of M = 30 to 50 have been made on this basis more recently, and an ad hoc rule of thumb that has

been proposed is to take M to be roughly equal to the percentage of missing information.

The somewhat circular reasoning underlying multiple imputation that we noted earlier; i.e., starting

with an efficient estimator to end up with an relatively inefficient estimator, raises the obvious question:

“why do multiple imputation?” In addition to the practical appeal, an advantage that has been cited

is that, once M imputed data sets have been created, they can be used for multiple purposes and

by multiple analysts with different objectives. For example, the data sets could be made publicly

available to researchers.
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4.9 Additional results

In this section, we examine some of the results in previous sections in more detail. First, we take a

closer look at Rubin’s variance estimator from a Bayesian perspective via a heuristic argument. We

then present a sketch of the argument leading to the asymptotic normality result for the improper

imputation estimator given in (4.15) as a demonstration of the considerations involved in proving

such results.

RUBIN’S VARIANCE ESTIMATOR FROM A BAYESIAN PERSPECTIVE: We begin by observing the

connection between the posterior distribution of a parameter and the asymptotic distribution of

a consistent and asymptotically normal estimator for the parameter. Recall that, in our discussion of

sort-of proper imputation, we noted that making draws from the asymptotic distribution (4.17) of

θ̂(init) is roughly the same as drawing from the posterior distribution of θ given the observed data for

large N and certain choices of prior distribution for θ.

Suppose as usual that Z represents the full data, and we assume a full data model pZ (z; θ). Suppose

we have a sample Z˜ = {Z1, ... , ZN}, assumed to arise from this model.

Suppose further that we put a prior on θ, pθ(θ), say. Then by Bayes’ Rule, the posterior density of θ

given the sample of full data Z˜ is

pθ|Z˜(θ|Z˜) = c(Z˜)

{
N∏

i=1

pZ (Zi ; θ)

}
pθ(θ),

where c(Z˜) is a normalizing constant. Taking logarithms yields

log{pθ|Z˜(θ|Z˜)} =
N∑

i=1

log{pZ (Zi ; θ)} + log{pθ(θ)} + log{c(Z˜). (4.52)

The first term on the right hand side of (4.52) is the full data loglikelihood, maximization of which in θ

leads to the full data MLE θ̂F .

As we now demonstrate, under suitable regularity conditions, the posterior distribution of θ given

the full data is approximately normal with mean equal to the MLE θ̂F and covariance matrix equal

to the inverse of the full data observed information matrix evaluated at θ̂F ; i.e., IF (Z˜ ; θ̂F ).
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Expand the full data loglikelihood via a Taylor series to quadratic terms about the MLE θ̂F :

N∑
i=1

log{pZ (Zi ; θ)} ≈
N∑

i=1

log{pZ (Zi ; θ̂F )} +
N∑

i=1

∂

∂θT log{pZ (Zi ; θ̂F )} (θ − θ̂F ) (4.53)

+(1/2)(θ − θ̂F )T

[
N∑

i=1

∂2

∂θ∂θT log{pZ (Zi ; θ̂F )}

]
(θ − θ̂F ). (4.54)

• The first term on the right hand side of (4.53) is a function of the data Z˜ only, so does not

involve θ.

• The second term on the right hand side of (4.53) involves

N∑
i=1

SF (Zi ; θ̂F ),

which equals zero by definition; i.e, θ̂F is the value that solves the score equation.

• In (4.54),

−
N∑

i=1

∂2

∂θ∂θT log{pZ (Zi ; θ̂F )} = IF (Z˜ ; θ̂F ).

Accordingly, absorbing the first term into a proportionality constant, we have

pθ|Z˜(θ|Z˜) ≈ d(Z˜) exp{−(θ − θ̂F )T IF (Z˜ ; θ̂F )(θ − θ̂F )/2}pθ(θ). (4.55)

Note that (4.55) is, up to a proportionality constant, the density as a function of θ of a multivariate

normal with mean θ̂F and covariance matrix {IF (Z˜ ; θ̂F )}−1.

Note further that, as N → ∞, IF (Z˜ ; θ̂F ) gets larger and larger, so that {IF (Z˜ ; θ̂F )}−1 converges to a

zero matrix. This implies that the (posterior) normal density in (4.55) concentrates more and more

mass near θ̂F as N → ∞. Consequently, the prior pθ(θ) plays less and less of a role in determining

the density of the posterior distribution of θ as N gets larger.

From this heuristic argument, we see that the posterior distribution is approximately

N [ θ̂F , {IF (Z˜ ; θ̂F )}−1 ],

and thus

E(θ|Z˜) ≈ θ̂F , var(θ|Z˜) ≈ {IF (Z˜ ; θ̂F )}−1. (4.56)
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By a similar argument, given a sample of observed data (R˜ , Z˜ (R˜)) = {(Ri , Z(Ri )i ), i = 1, ... , N},

we can show, analogous to (4.56), the posterior density of θ given the observed sample data,

pθ|R˜,Z˜(R˜)
(θ|R˜ , Z˜ (R˜)), is approximately

N [ θ̂, {I(R˜ , Z˜ (R˜); θ)}−1 ],

with

E(θ|R˜ , Z˜ (R˜)) ≈ θ̂, var(θ|R˜ , Z˜ (R˜)) ≈ {I(R˜ , Z˜ (R˜); θ̂)}−1, (4.57)

where recall that θ̂ is the observed data MLE.

Now consider proper multiple imputation , in which we generate M artificial full data sets

Z˜ (1), ... , Z˜ (M), where Z˜ (m) = {Z (m)
i , i = 1, ... , N}, m = 1, ... , M, from the Bayesian posterior predictive

distribution

pZ˜|R˜,Z˜(R˜)
(z˜|R˜ , Z˜ (R˜)).

For each imputed data set Z˜ (m), we compute the full data estimator θ̂∗(m), which, from (4.56), is such

that

θ̂∗(m) ≈ E(θ|Z˜ (m)). (4.58)

The multiple imputation estimator is then

θ̂∗M = M−1
M∑

m=1

θ̂∗(m) ≈ M−1
M∑

m=1

E(θ|Z˜ (m)), (4.59)

where we have added the subscript “M ” to emphasize explicitly that the estimator (4.59) is based on

M imputed data sets.

From (4.57), we have

E{E(θ|Z˜ (m))|R˜ , Z˜ (R˜)} = E(θ|R˜ , Z˜ (R˜)) ≈ θ̂. (4.60)

Now consider the multiple imputation estimator θ̂∗M in (4.59) when M → ∞. Using (4.58) and (4.60),

it follows that θ̂∗M converges in probability to

E{E(θ|Z˜ (m))|R˜ , Z˜ (R˜)} = E(θ|R˜ , Z˜ (R˜)),

and thus, for large M,

θ̂∗M ≈ θ̂.
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Moreover, from a frequentist point of view, we have the large sample result

θ̂
·∼ N [ θ0, {I(R˜ , Z˜ (R˜); θ̂)}−1 ],

where, from (4.57), we have

{I(R˜ , Z˜ (R˜); θ̂)}−1 ≈ var(θ|R˜ , Z˜ (R˜)) (4.61)

By the law of total variance, or Eve’s Law, we have that

var(θ|R˜ , Z˜ (R˜)) = E{var(θ|Z˜)|R˜ , Z˜ (R˜)} + var{E(θ|Z˜)|R˜ , Z˜ (R˜)}. (4.62)

It is straightforward that the second term on the right hand side of (4.62), var{E(θ|Z˜)|R˜ , Z˜ (R˜)}, can be

estimated unbiasedly using the M imputations by

(M − 1)−1
M∑

m=1

{
E(θ|Z˜ (m))−M−1

M∑
`=1

E(θ|Z˜ (`))

}{
E(θ|Z˜ (m))−M−1

M∑
`=1

E(θ|Z˜ (`))

}T

. (4.63)

Because from (4.58)

E(θ|Z˜ (m)) ≈ θ̂∗(m),

we can approximate (4.63) by

(M − 1)−1
M∑

m=1

(
θ̂∗(m) −M−1

M∑
`=1

θ̂∗(`)

)(
θ̂∗(m) −M−1

M∑
`=1

θ̂∗(`)

)T

.

Similarly, an unbiased estimator for the first term on the right hand side of (4.62), E{var(θ|Z˜)|R˜ , Z˜ (R˜)},

is

M−1
M∑

m=1

var(θ|Z˜ (m)). (4.64)

From (4.56),

var(θ|Z˜ (m)) ≈ {IF (Z˜ ; θ̂∗(m))}−1,

suggesting that we can approximate (4.64) by

M−1
M∑

m=1

{IF (Z˜ ; θ̂∗(m))}−1.

Substituting these results into (4.62), and using (4.59), namely, that θ̂∗M ≈ M−1∑M
i=1 θ̂

∗(m), an approx-

imate unbiased predictor for var(θ|R˜ , Z˜ (R˜)) is then

M−1
M∑

m=1

{IF (Z˜ ; θ̂∗(m))}−1 + (M − 1)−1
M∑

m=1

(θ̂∗(m) − θ̂∗M )(θ̂∗(m) − θ̂∗M )T . (4.65)
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Because of (4.61),

var(θ|R˜ , Z˜ (R˜)) ≈ {I(R˜ , Z˜ (R˜); θ̂)}−1,

(4.65) is an approximate unbiased estimator for {I(R˜ , Z˜ (R˜); θ̂)}−1. Moreover, because θ̂∗M ≈ θ̂ for

large M from above, (4.65) is also an estimator for the asymptotic variance of the multiple imputation

estimator θ̂∗M as M →∞.

In fact, (4.65) is very close to Rubin’s variance estimator (4.11). However, we must account for the

fact that M, the number of imputations, is finite.

We now take a frequentist point of view and consider the unconditional variance

var(θ̂∗M ) = E{var(θ̂∗M |R˜ , Z˜ (R˜))} + var{E(θ̂∗M |R˜ , Z˜ (R˜))}, (4.66)

where the expectations and variances in (4.66) are of course with respect to the true distribution of

the full data, which has density pZ (z; θ0) for some θ0.

Consider each term in (4.66). Because Z˜ (m), m = 1, ... , M, are generated from the “made-up” predic-

tive distribution of Z˜ given R˜ , Z˜ (R˜), this predictive distribution has nothing to do with θ0 that generates

R˜ , Z˜ (R˜). Thus

E(θ̂∗M |R˜ , Z˜ (R˜)) = M−1
M∑

m=1

E(θ̂∗(m)|R˜ , Z˜ (R˜))

≈ M−1
M∑
i=1

E{E(θ|Z˜ (m))|R˜ , Z˜ (R˜)} = E(θ|R˜ , Z˜ (R˜)) ≈ θ̂,

and

var{E(θ̂∗M |R˜ , Z˜ (R˜))} ≈ var(θ̂),

which can be estimated by {I(R˜ , Z˜ (R˜); θ̂)}−1.

Likewise,

var(θ̂∗M |R˜ , Z˜ (R˜)) = var

{
M−1

M∑
i=1

E(θ|Z˜ (m))|R˜ , Z˜ (R˜))

}
= M−1var{E(θ|Z )|R˜ , Z˜ (R˜)}. (4.67)

From above, (4.67) comes about from the predictive distribution, having nothing to do with θ0, and

can be estimated by

M−1

{
(M − 1)−1

M∑
m=1

(θ̂∗(m) − θ̂∗M )(θ̂∗(m) − θ̂∗M )T

}
.
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From these considerations, (4.66) can be written as

E

{
M−1(M − 1)1

M∑
m=1

(θ̂∗(m) − θ̂∗M )(θ̂∗(m) − θ̂∗M )T

}
+ var(θ̂)

= E

{
M−1(M − 1)−1

M∑
m=1

(θ̂∗(m) − θ̂∗M )(θ̂∗(m) − θ̂∗M )T

}
+ {I(R˜ , Z˜ (R˜); θ̂)}−1. (4.68)

From above, (4.65) is an unbiased estimator for {I(R˜ , Z˜ (R˜); θ̂)}−1. Taking this together with (4.68), we

conclude that an unbiased estimator for var(θ̂∗M ) is given by

M−1
M∑

m=1

{IF (Z˜ ; θ̂∗(m))}−1 +
(

M + 1
M

)
(M − 1)−1

M∑
m=1

(θ̂∗(m) − θ̂∗M )(θ̂∗(m) − θ̂∗M )T ,

which is Rubin’s variance estimator (4.11).

HEURISTIC JUSTIFICATION FOR ASYMPTOTIC RESULT FOR IMPROPER IMPUTATION: We

now outline the steps in an argument to obtain the asymptotic result for the improper imputation

estimator given in (4.15), repeated here for convenience as

N1/2(θ̂∗(improper ) − θ0) L−→ N (0,Σ∗(improper )),

Σ∗(improper ) = {IF (θ0)}−1 +
(

M + 1
M

)
{IF (θ0)}−1{IF (θ0)− I(θ0)}{IF (θ0)}−1

+{IF (θ0)}−1{IF (θ0)− I(θ0)}Σ(init){IF (θ0)− I(θ0)}{IF (θ0)}−1, (4.69)

and improper imputation is based on an initial estimator θ̂(init) with asymptotic covariance matrix

Σ(init)(θ0) = Σ(init). For brevity in what follows, we write θ̂∗ = θ̂∗(improper ).

Here, we assume that the initial estimator θ̂(init) for θ is a regular, asymptotically linear (RAL)

estimator ; for example, an M-estimator is ordinarily a RAL estimator. For large N, such an estimator

satisfies

N1/2(θ̂(init) − θ0) ≈ N−1/2
N∑

i=1

ϕ(init)(Ri , Z(Ri )i ), (4.70)

where ϕ(init)(R, Z(R)) has mean zero and is referred to as the influence function of the estimator

θ̂(init). It follows that the asymptotic variance of θ̂(init) is equal to

var{ϕ(init)(R, Z(R))} = E{ϕ(init)(R, Z(R))ϕ(init)(R, Z(R))T = Σ(init),

and

N1/2(θ̂(init) − θ0) L−→ N (0,Σ(init)).
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Recall that in improper imputation we draw Z (m)
i (θ̂(init)) from pZ |R,Z(R)

(z|Ri , Z(Ri )i ; θ̂
(init)), i = 1, ... , N,

and obtain θ̂∗(m), m = 1, ... , M, by solving

N∑
i=1

SF
θ {Z

(m)
i (θ̂(init)); θ} = 0, m = 1, ... , M.

We then obtain the improper imputation estimator as θ̂∗ =
∑M

i=1 θ̂
∗(m). This estimator is asymptoti-

cally equivalent to the solution to the estimating equation

N∑
i=1

[
M−1

M∑
m=1

SF
θ {Z

(m)
i (θ̂(init)); θ}

]
= 0.

By a linear Taylor series expansion, we thus have

0 = N1/2
N∑

i=1

[
M−1

M∑
m=1

SF
θ {Z

(m)
i (θ̂(init)); θ̂∗}

]
≈ N1/2

N∑
i=1

[
M−1

M∑
m=1

SF
θ {Z

(m)
i (θ̂(init)); θ0}

]

+

(
N−1

N∑
i=1

[
M−1

M∑
m=1

∂

∂θT SF
θ {Z

(m)
i (θ̂(init)); θ0}

])
N1/2(θ̂∗ − θ0). (4.71)

Under regularity conditions, the first term in (4.71) satisfies

N−1
N∑

i=1

[
M−1

M∑
m=1

∂

∂θT SF
θ {Z

(m)
i (θ̂(init)); θ0}

]
p−→ E

[
∂

∂θT SF
θ {Z

(m)
i (θ0); θ0}

]
= −{IF (θ0)}−1

as N →∞, because Z (m)
i (θ0) has density pZ (z; θ0). We can thus rewrite this as

N1/2(θ̂∗ − θ0) ≈ {IF (θ0)}−1CN , CN = N−1/2
N∑

i=1

[
M−1

M∑
m=1

SF
θ {Z

(m)
i (θ̂(init)); θ0}

]
. (4.72)

Thus, consider the behavior of CN in (4.72).

Write CN as

CN = N−1/2
N∑

i=1

[
M−1

M∑
m=1

SF
θ {Z

(m)
i (θ0); θ0}

]

+

(
N−1/2

N∑
i=1

[
M−1

M∑
m=1

SF
θ {Z

(m)
i (θ̂(init)); θ0}

]
− N−1/2

N∑
i=1

[
M−1

M∑
m=1

SF
θ {Z

(m)
i (θ0); θ0}

])
. (4.73)

For brevity, define

Gi (θ, θ0) = M−1
M∑

m=1

SF
θ {Z

(m)
i (θ); θ0},

so that (4.73) can be written compactly as

CN = N−1/2
N∑

i=1

Gi (θ0, θ0) +

{
N−1/2

N∑
i=1

Gi (θ̂(init), θ0)− N−1/2
N∑

i=1

Gi (θ0, θ0)

}
. (4.74)
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Let

λ(θ, θ0) = E{Gi (θ, θ0)},

where expectation is with respect to the true distribution of the data. Then the function of θ given by

WN (θ) = N−1/2
N∑

i=1

{Gi (θ, θ0)− λ(θ, θ0)}

is a centered stochastic process. Under suitable regularity conditions, the theory of empirical

processes can be used to show that WN (θ) converges to a mean zero Gaussian process. This

implies stochastic equicontinuity of the process, under which it can be shown that

WN (θ̂(init))−WN (θ0)

= N−1/2
N∑

i=1

{Gi (θ̂(init), θ0)− λ(θ̂(init), θ0)} − N−1/2
N∑

i=1

{Gi (θ0, θ0)− λ(θ0, θ0)} p−→ 0. (4.75)

The details of such an argument are beyond our scope here; a sketch can be found in Tsiatis (2006,

Section 14.3). Rearranging (4.75), we thus have

N−1/2
N∑

i=1

Gi (θ̂(init), θ0)− N−1/2
N∑

i=1

Gi (θ0, θ0) ≈ N1/2{λ(θ̂(init), θ0)− λ(θ0, θ0)}.

It then follows from (4.74) that

CN ≈ N−1/2
N∑

i=1

Gi (θ0, θ0) + N1/2{λ(θ̂(init), θ0)− λ(θ0, θ0)} (4.76)

A Taylor series expansion of the second term on the right hand side of (4.76) yields

N1/2{λ(θ̂(init), θ0)− λ(θ0, θ0)} ≈
{
∂λ(θ, θ0)
∂θT

}
θ=θ0

N1/2(θ̂(init) − θ0).

From (4.70), we thus obtain that

CN ≈ N−1/2
N∑

i=1

[
Gi (θ0, θ0) +

{
∂λ(θ, θ0)
∂θT

}
θ=θ0

ϕ(init)(Ri , Z(Ri )i )

]
. (4.77)

A summand (in brackets) in (4.77) has mean zero. We would thus like to apply the central limit

theorem to (4.77) to obtain the limit in distribution of CN . To do this, we must

(a) Derive var{Gi (θ0, θ0)} = E{Gi (θ0, θ0)Gi (θ0, θ0)T}.

(b) Derive
{
∂λ(θ, θ0)
∂θT

}
θ=θ0

(c) Derive cov{Gi (θ0, θ0),ϕ(init)(Ri , Z(Ri )i )} = E{Gi (θ0, θ0)ϕ(init)(Ri , Z(Ri )i )
T}.

We tackle each of these in turn.
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(a) Derive var{Gi (θ0, θ0)}. Recall that

Gi (θ0, θ0) = M−1
M∑

m=1

SF
θ {Z

(m)
i (θ0); θ0},

and that we start with {Ri , Z(Ri )i} and generate Z (m)
i (θ0) from the predictive distribution pZ |R,Z(R)

(z|Ri , Z(Ri )i ).

Now

var{Gi (θ0, θ0)} = E [var{Gi (θ0, θ0)}|Ri , Z(Ri )i ] + var[E{Gi (θ0, θ0)|Ri , Z(Ri )i}]

= E

(
var

[
M−1

M∑
i=1

SF
θ {Z

(m)
i (θ0); θ0}

∣∣∣∣∣Ri , Z(Ri )i

])
+ var

(
E

[
M−1

M∑
i=1

SF
θ {Z

(m)
i (θ0); θ0}

∣∣∣∣∣Ri , Z(Ri )i

])

= E
[
M−1var{SF

θ (Zi ; θ0)|Ri , Z(Ri )i

]
+ var

[
E{SF

θ (Zi ; θ0)|Ri , Z(Ri )i}
]

(4.78)

= E
[
M−1var{SF

θ (Zi ; θ0)|Ri , Z(Ri )i}
]

+ var{Sθ(R, Z(R))}

= E
[
M−1var{SF

θ (Zi ; θ0)|Ri , Z(Ri )i}
]

+ I(θ0). (4.79)

The equality in (4.78) follows because, conditional on (Ri , Z(Ri )i ), the Z (m)
i (θ0) are independent draws

from the predictive distribution pZ |R,Z(R)
(z|Ri , Z(Ri )i ; θ0).

From the argument for the missing information principle , we have

var{SF
θ (Z ; θ0)} = E [var{SF

θ (Z ; θ0)|R, Z(R)}] + var[E{SF
θ (Z ; θ0)|R, Z(R)}],

which, recognizing that var{SF
θ (Z ; θ0)} = IF (θ0) and var[E{SF

θ (Z ; θ0)|R, Z(R)}] = I(θ0), yields

E [var{SF
θ (Z ; θ0|R, Z(R))}] = IF (θ0)− I(θ0).

Substituting this in (4.79), we obtain

var{Gi (θ0, θ0)} = I(θ0) + M−1{IF (θ0)− I(θ0)}. (4.80)

(b) Derive
{
∂λ(θ, θ0)
∂θT

}
θ=θ0

, where again

λ(θ, θ0) = E{Gi (θ, θ0)} = E
[
SF
θ {Z

(m)
i (θ); θ0}

]
. (4.81)

We can write (4.81) as

λ(θ, θ0) = E
(

E
[

SF
θ {Z (m)(θ); θ0}

∣∣∣R, Z(R)

])
, (4.82)

where Z (m)(θ) is generated from the predictive distribution pZ |R,Z(R)
(z|R, Z(R); θ).

120



CHAPTER 4 ST 790, MISSING DATA

The inner expectation in (4.82) is thus∫
SF
θ (z; θ0) pZ |R,Z(R)

(z|r , z(r ); θ) dν(z(r̄ )).

Because the outer expectation is with respect to the true distribution of (R, Z(R)), (4.82) can be written

λ(θ, θ0) =
∫ ∫

SF
θ (z; θ0) pZ |R,Z(R)

(z|r , z(r ); θ) dν(z(r̄ )) pR,Z(R)(r , z(r ); θ0) dν(z(r )) dν(r ) (4.83)

We can take the partial derivative of (4.83), interchanging the order of integration and differentiation,

to obtain{
∂λ(θ, θ0)
∂θT

}
θ=θ0

=
∫ ∫

SF
θ (z; θ0)

{
∂pZ |R,Z(R)

(z|r , z(r ); θ)

∂θT

}
θ=θ0

pR,Z(R)(r , z(r ); θ0) dν(z(r̄ )) dν(z(r )) dν(r )

=
∫ ∫

SF
θ (z; θ0)

∂ log{pZ |R,Z(R)
(z|r , z(r ); θ0)}

∂θT pZ |R,Z(R)
(z|r , z(r ); θ0) pR,Z(R)(r , z(r ); θ0) dν(z(r̄ )) dν(z(r )) dν(r ).

(4.84)

Because

pZ |R,Z(R)
(z|r , z(r ); θ) =

pR,Z (r , z; θ)
pR,Z(R)(r , z(r ); θ)

,

we have

log{pZ |R,Z(R)
(z|r , z(r ); θ)} = log{pR,Z (r , z; θ)} − log{pR,Z(R)(r , z(r ); θ)},

so that
∂ log{pZ |R,Z(R)

(z|r , z(r ); θ0)}
∂θT = SF

θ (z; θ0)T − Sθ(r , z(r ); θ0)T . (4.85)

Substituting (4.85) into (4.84) yields{
∂λ(θ, θ0)
∂θT

}
θ=θ0

= E
[
SF
θ (Z ; θ0){SF

θ (Z ; θ0)T − Sθ(R, Z(R); θ0)T}
]

(4.86)

(verify). Now

E{SF
θ (Z ; θ0)SF

θ (Z ; θ0)T} = IF (θ0)

and

E{SF
θ (Z ; θ0)Sθ(R, Z(R); θ0)T} = E

[
E{SF

θ (Z ; θ0)Sθ(R, Z(R); θ0)T |R, Z(R)}
]

= E
[
E{SF

θ (Z ; θ0)|R, Z(R)}Sθ(R, Z(R); θ0)T
]

= E{Sθ(R, Z(R); θ0)Sθ(R, Z(R); θ0)T} = I(θ0).

Applying these results to (4.86) leads to{
∂λ(θ, θ0)
∂θT

}
θ=θ0

= IF (θ0)− I(θ0). (4.87)
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(c) Derive cov{Gi (θ0, θ0),ϕ(init)(Ri , Z(Ri )i )} = E{Gi (θ0, θ0)ϕ(init)(Ri , Z(Ri )i )
T}. It is straightforward that

E{Gi (θ0, θ0)ϕ(init)(Ri , Z(Ri )i )
T} = E

[
E{Gi (θ0, θ0)ϕ(init)(Ri , Z(Ri )i )

T |Ri , Z(Ri )i}
]

= E{Sθ(Ri , Z(Ri )i ; θ0)ϕ(init)(Ri , Z(Ri )i )
T} = Ip, (4.88)

where Ip is a (p × p) identity matrix, and p is the dimension of θ. The final equality follows by a

well-known property of influence functions of RAL estimators, which is proved in Theorem 3.2 of

Tsiatis (2006).

Having demonstrated (a)-(c), we can now deduce the final result. Using (4.80), (4.87), and (4.88), we

have that

CN
L−→ N (0,ΣC), (4.89)

ΣC = I(θ0) + M−1{IF (θ0)− I(θ0)} + {IF (θ0)− I(θ0)}Σ(init){IF (θ0)− I(θ0)}T + 2{IF (θ0)− I(θ0)}.

Thus, from (4.72),

N1/2(θ̂∗ − θ0) ≈ {IF (θ0)}−1CN
L−→ N

[
0, {IF (θ0)}−1ΣC{IF (θ0)}−1

]
,

from which we obtain the final result that

N1/2(θ̂∗(improper ) − θ0) L−→ N (0,Σ∗(improper )), (4.90)

because, by straightforward algebra (try it),

{IF (θ0)}−1ΣC{IF (θ0)}−1

= {IF (θ0)}−1
[
I(θ0) + M−1{IF (θ0)− I(θ0)}

+ {IF (θ0)− I(θ0)}Σ(init){IF (θ0)− I(θ0)}T + 2{IF (θ0)− I(θ0)}
]
{IF (θ0)}−1

= {IF (θ0)}−1 +
(

M + 1
M

)
{IF (θ0)}−1{IF (θ0)− I(θ0)}{IF (θ0)}−1

+ {IF (θ0)}−1{IF (θ0)− I(θ0)}Σ(init){IF (θ0)− I(θ0)}{IF (θ0)}−1

= Σ∗(improper ).
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