
CHAPTER 3 ST 790, MISSING DATA

3 Likelihood-based Methods Under MAR

In this chapter, we provide an overview of methods for inference in the presence of missing data

based on the principles of maximum likelihood when it is reasonable to assume that the missing

data mechanism is MAR. Some of the material introduced here, especially that in Section 3.2, will be

important in later chapters as well. The concept of ignorability, discussed in Section 3.3, is central

to the methods discussed in this chapter.

3.1 Review of maximum likelihood inference for full data

Before we discuss the case of missing data, we review briefly in our context and notation the basic

principles of maximum likelihood.

As always, let Z denote generically the full data of interest. Suppose as discussed in Chapter 1

that we posit a parametric model for the probability density of Z in terms of a finite dimensional

parameter θ, which we write as

pZ (z; θ). (3.1)

Interest may focus on all of θ or on a function of its components.

Given a model (3.1) and a sample of data Zi , i = 1 ... , N (iid), the goal is to estimate θ. Define the

(full data) score vector as the vector of partial derivatives of log{pZ (z; θ)} with respect to each of

the elements of θ, i.e.,

SF
θ (z; θ) =

∂

∂θ
log{pZ (z; θ)}. (3.2)

Then the maximum likelihood estimator (MLE) for θ based on the full data, θ̂F , is the value of θ

maximizing
N∏

i=1

pZ (Zi ; θ) or equivalently
N∑

i=1

log{pZ (Zi ; θ)}.

Under regularity conditions, the estimator θ̂F is found by solving in θ the score equation

N∑
i=1

SF
θ (Zi ; θ) = 0.

Assuming that the model (3.1) is correctly specified in the sense that there exists some θ0 such

that pZ (z; θ0) is the true distribution that generates the data, then, under regularity conditions, it is

well-known that

θ̂F p−→ θ0.
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That is, the MLE is a consistent estimator.

Moreover, under these conditions,

N1/2(θ̂F − θ0) L−→ N [0, {IF (θ0)}−1], (3.3)

where IF (θ0) is the full data information matrix, and

IF (θ) = −Eθ

[
∂2

∂θ ∂θT log{pZ (Z ; θ)}
]

= Eθ
{

SF
θ (Z ; θ)SF

θ (Z ; θ)T
}

. (3.4)

The first expression in (3.4) is the expectation of the matrix of second partial derivatives of log{pZ (z; θ)}

with respect to the elements of θ evaluated at θ0. As in Chapter 1, this is shorthand for the fact that

N1/2(θ̂F−θ0) converges in distribution (law) to a normal random vector with mean zero and covariance

matrix {IF (θ0)}−1.

Under regularity conditions, IF (θ̂F )
p−→ IF (θ0). Using this and (3.3), we have

θ̂F ·∼ N [θ0, N−1{IF (θ̂F )}−1]. (3.5)

The expression IF (θ0) is referred to as the expected information matrix and is an expectation for a

single observation Z . The observed information matrix is a sample analog based on Z˜ = {Zi , i =

1 ... , N}; the usual definition is

IF (Z˜ ; θ) = −
N∑

i=1

∂2

∂θ ∂θT log{pZ (Zi ; θ)}. (3.6)

Under regularity conditions,

N−1IF (Z˜ ; θ̂F )
p−→ IF (θ0).

Thus, we can use this and (3.3) to conclude that

θ̂F ·∼ N [θ0, N−1{N−1IF (Z˜ ; θ̂F )}−1] = N [θ0, {IF (Z˜ ; θ̂F )}−1]. (3.7)

The results (3.5) and (3.7) are used in practice to derive approximate (large sample) standard errors

for components of θ̂F and confidence intervals for components of θ in the usual way.

The foregoing developments are standard and indeed fundamental results in statistical inference. The

challenge in our context is that we do not observe the full data; rather, we wish carry out likelihood-

based inference on θ in the model for the full data pZ (z; θ) using the observed data

(R, Z(R)).
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By analogy to the standard full data problem, this requires deducing the probability density of the

observed data.

As a prelude to addressing this, we consider first the starting point for this and other methods we will

discuss, the density of the ideal full data

(R, Z ).

We refer to these data as “ideal” because they are not observable in practice in general – if R = 1˜,

where 1˜ is a K -vector of all 1s, then we do observe all of Z , but otherwise we cannot observe both

R and Z . Although the ideal full data are thus not practically relevant, they are a useful device for

motivating important frameworks for missing data methods, including likelihood-based methods.

3.2 Factorization of the density of (R, Z )

Consider the ideal full data (R, Z ), with joint density pR,Z (r , z). Three different factorizations of this

joint density lead to three different modeling approaches.

SELECTION MODEL FACTORIZATION: One way the joint density can be written is, in obvious

notation,

pR,Z (r , z) = pR|Z (r |z)pZ (z). (3.8)

The factorization (3.8) involves directly the full data density pZ (z), for which the model pZ (z; θ) has

been postulated, and the missingness mechanism pR|Z (r |z).

As R is discrete, the probability density pR|Z (r |z) is a probability mass function so is analogous to

the way we wrote the missingness mechanism previously, for fixed r and z, as pr(R = r |Z = z). We

say more about this in the next section.

This factorization suggests what is referred to as the selection model framework, which involves a

full data model and a model for the missingness mechanism, which we write as

pR,Z (r , z; θ,ψ) = pR|Z (r |z;ψ)pZ (z; θ). (3.9)

In (3.9), pR|Z (r |z;ψ) is a parametric model for the missingness mechanism. Selection models were

first used by Rubin (1976), and, according to Molenberghs and Kenward (2007, Chapter 3), the

terminology was coined in the econometrics literature.

We will see in the next section how the selection model factorization is critical to formulating likelihood-

based inference from the observed data.
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PATTERN MIXTURE FACTORIZATION: The obvious alternative to the selection model factorization

is to write the joint density as

pR,Z (r , z) = pZ |R(z|r )pR(r ). (3.10)

The factorization (3.10) can be viewed as incorporating the density of the full data for given patterns

of missingness weighted by the probability of each pattern.

The corresponding pattern mixture model framework involves modeling each of these components:

pR,Z (r , z; θ,ψ) = pZ |R(z|r ; θ)pR(r ;ψ); (3.11)

actually, pR(r ;ψ) is simply the probability mass function for the discrete distribution of possible miss-

ingness patterns. Pattern mixture models were first proposed by Little (1993).

Note that in (3.11) θ and ψ have different interpretations from those in the selection model (3.9); we

use the same symbols for convenience, but their meaning depends on the context. Thus, θ in (3.11)

is not the parameter ordinarily of interest, that governing the assumed model for the full data. In fact,

such a quantity is not directly represented in the pattern mixture model framework.

SHARED PARAMETER MODEL: A third type of framework is based on the same type of factorization

(3.8) but conditional on an additional vector of random or latent effects b, namely

pR,Z |b(r , z|b; θ,ψ) = pZ |R,b(z|r , b; θ)pR|b(r |b;ψ). (3.12)

In (3.12), the random effects b are “shared” between the two components of the joint (conditional)

density. The usual assumption is that Z and R are conditionally independent given b, so that (3.12)

becomes

pR,Z |b(r , z|b; θ,ψ) = pZ |b(z|b; θ)pR|b(r |b;ψ). (3.13)

The shared parameter b can be interpreted as a latent mechanism governing both the data and

missingness processes. In the shared parameter framework, one posits models depending on such

a random effect; for example, if Z is a vector of longitudinal outcomes, pZ |b(z|b; θ) may correspond to

a hierarchical mixed effects model specified in terms of individual-specific random effects.

Note that by integrating (3.13) over the density of b, a model for the joint density of (R, Z ) is obtained.

Again, the interpretation of θ and ψ is different from those for selection and pattern mixture models.

We will return to pattern mixture and shared parameter models later in the course. We now demon-

strate how the selection model framework forms the basis for deriving likelihood-based inference

using the observed data.
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3.3 Observed data likelihood and ignorability

Consider a model for the joint density of (R, Z ) formulated according to the selection model factor-

ization (3.9), namely

pR,Z (r , z; θ,ψ) = pR|Z (r |z;ψ)pZ (z; θ). (3.14)

SEPARABILITY CONDITION: It is conventional to assume that the parameters θ and ψ in (3.14) are

variation independent. If θ is (p × 1) and ψ is (q × 1), this states that the possible values of the

(p + q×1) vector (θT ,ψT )T lie in a rectangle of dimension (p×q); that is, if the parameter spaces of θ

and ψ are Θ and Ψ, say, then the parameter space of (θT ,ψT )T is Θ×Ψ. This implies that the range

of θ is the same for all possible values of ψ and vice versa. Thus, intuitively, knowing the value of ψ,

say, provides no information on that of θ, and vice versa. This is often referred to as the separability

condition.

JOINT DENSITY OF (R, Z(R)): Recall that, for a specific value r of R, we write Z(r ) to denote the part

of Z that is observed for missingness pattern r and Z(r̄ ) to denote the part that is missing. Thus, we

can think of Z as being partitioned as Z = (Z(r ), Z(r̄ )) when R = r . Under (3.14), we can write the joint

density of (R, Z(R)) evaluated at r and z(r ) as

pR,Z(R))(r , z(r ); θ,ψ) =
∫

pR|Z (r |z;ψ) pZ (z; θ) dν(z(r̄ ))

=
∫

pR|Z{r |(z(r ), z(r̄ ));ψ}pZ{(z(r ), z(r̄ )); θ}dν(z(r̄ )) (3.15)

• In (3.15), ν(·) is a dominating measure, which is Lebesgue measure for continuous random

variables and the counting measure for discrete random variables. This is a technicality that

allows us to write probability densities as we have been doing regardless of whether the ran-

dom variables are continuous or discrete; a probability mass function is a probability density

with respect to the counting measure. We can thus write expressions like (3.15) as integrals

regardless of the nature of the random variables in question (instead of having to use summa-

tions explicitly when random variables are discrete.) (If you take ST 779, you will learn more

about this.)

• Note that the interpretation of (3.15) is that we are integrating (summing) the joint density

pR,Z (r , z; θ,ψ) over the part of the full data that is missing, so that the resulting expression

involves only z(r ).
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JOINT DENSITY UNDER MAR: The integral in (3.15) seems fairly complicated and implies that,

even though interest focuses on θ, one must contend with ψ as well.

When the missingness mechanism is MAR, however, (3.15) takes on a simpler form. In particular,

under MAR,

pr(R = r |Z ) = pr(R = r |Z(r )),

which under (3.14) is analogous to writing

pR|Z (r |z;ψ) = pR|Z(r )
(r |z(r );ψ);

that is, pR|Z (r |z;ψ) depends only on z(r ).

Under this condition, because pR|Z (r |z(r );ψ) does not depend on z(r̄ ), it is not involved in the integral,

and we can rewrite (3.15) as

pR,Z(R)(r , z(r ); θ,ψ) = pR|Z(r )
(r |z(r );ψ)

∫
pZ (z; θ) dν(z(r̄ )). (3.16)

Note further that

pZ(r ))(z(r ); θ) =
∫

pZ (z; θ) dν(z(r̄ )); (3.17)

that is, (3.17) is the density for the part of Z that is observed for fixed r , as it is simply the density for

the full data with the “missing part” integrated out.

Thus, combining (3.16) and (3.17), we have that the joint density of (R, Z(R)) evaluated at r and z(r )

can be written as

pR,Z(R))(r , z(r ); θ,ψ) = pR|Z(r )
(r |z(r );ψ) pZ(r )(z(r ); θ). (3.18)

Some observations are immediate:

• Unlike in (3.15), where the involvement of θ and ψ is linked within the integral, the involvement

of θ and ψ in (3.16) and (3.18) (so under MAR) is distinct.

• This feature is the basis for ignorability, which we discuss next.
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LIKELIHOOD: Given sample observed data (Ri , Z(Ri )i ), i = 1, ... , N, we can use the foregoing results

to write the likelihood for θ and ψ as follows.

Note that for an individual i for whom the full data are observed, so that Ri = r = 1˜, in fact Z(r )i = Zi .

With this convention, it should be clear from (3.16) and (3.18) that the contribution to the likelihood

for a subject i with Ri = r is

pR,Z(R)(r , Z(r )i ; θ,ψ) = pR|Z(r )
(r |Z(r )i ;ψ)

∫
pZ{(Z(r )i , z(r̄ )); θ}dν(z(r̄ ))

= pR|Z(r )
(r |Z(r )i ;ψ) pZ(r )(Z(r )i ; θ) (3.19)

Thus, using (3.19), the contribution to the likelihood for the i th individual is

∏
r

pR,Z(R)(r , Z(r )i ; θ,ψ)I(Ri =r ) =
∏

r

{
pR|Z(r )

(r |Z(r )i ;ψ) pZ(r )(Z(r )i ; θ)
}I(Ri =r )

=
∏

r

pR|Z(r )
(r |Z(r )i ;ψ)I(Ri =r )

∏
r

pZ(r )(Z(r )i ; θ)I(Ri =r ), (3.20)

where the products in (3.20) are over all possible values of r .

IGNORABILITY: Under the separability condition, which says that there is no information about θ in

ψ, it is clear from (3.20) that only the second term is relevant to obtaining the MLE θ̂ for θ. Accordingly,

we need only maximize in θ

N∏
i=1

∏
r

pZ(r )(Z(r )i ; θ)I(Ri =r ) or equivalently
N∑

i=1

∑
r

I(Ri = r ) log
{

pZ(r )(Z(r )i ; θ)
}

(3.21)

• That is, we can ignore the missingness mechanism and need not even model it for the purpose

of calculating the MLE. All we require is a model for the full data density.

• This feature is commonly referred to as ignorability of the missingness mechanism.

• Under ignorability and the separability condition, it is commonplace in the literature on missing

data to refer to the first expression in (3.21), viewed as a function of θ for fixed data, as the

observed data likelihood. However, strictly speaking, this term should be used to refer to the

product of (3.20) over i = 1, ... , N,
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To demonstrate how these general results are used in practice, we consider two examples.

EXAMPLE 1: Estimation of the mean. Recall the situation in EXAMPLE 1 of Chapter 1 in which

the full data are Z = (Z1, Z2) = (Y , V ). For simplicity, we take both Y and V to be continuous here.

Interest focuses on estimation of

µ = E(Y ).

As before, V is a set of variables comprising auxiliary information that may be useful in justifying

the MAR assumption.

Suppose that Y may be missing, but V is always observed. As in Chapter 1, R = (R1, R2) can take

on the two possible values (1, 1) and (0, 1). Assume that

pr{R = (1, 1)|Y , V} = pr{R = (1, 1)|V} = π(V ),

which, as in Chapter 1, implies that pr{R = (0, 1)|Y , V} = 1 − π(V ), so that R ⊥⊥ Y |V , and the

missingness mechanism is MAR.

A likelihood-based approach to estimation of µ would proceed as follows. Suppose that we posit a

model for the density of the full data of the form

pZ (z; θ) = pY |V (y |v ; θ1) pV (v ; θ2), θ = (θT
1 , θT

2 )T ,

where θ1 and θ2 are variation independent. Then we can write

µ = E(Y ) = E{E(Y |V )} =
∫

y pY |V (y |v ; θ1) pV (v ; θ2) dy dv . (3.22)

From (3.22), if we were to obtain estimators θ̂1 and θ̂2 for θ1 and θ2, we could estimate µ by

µ̂ =
∫

y pY |V (y |v ; θ̂1) pV (v ; θ̂2) dy dv . (3.23)

Consider the MLEs θ̂1 and θ̂2 based on the observed data. To find these, we must maximize the

likelihood based on the observed data. Under MAR, from (3.20), if we were to posit a model for the

missingness mechanism in terms of parameter ψ, the likelihood for θ and ψ is
N∏

i=1

{∏
r

pR|Z(r )
(r |Z(r )i ;ψ)I(Ri =r )

} ∏
r

pZ(r )(Z(r )i ; θ)I(Ri =r )

=
N∏

i=1

{∏
r

pr(Ri = r |Z(r )i ;ψ)I(Ri =r )

} ∏
r

pZ(r )(Z(r )i ; θ)I(Ri =r ). (3.24)

Under the separability condition, from (3.21), we may ignore the first product over r in braces in

(3.24) and need only maximize in θ
N∏

i=1

∏
r

pZ(r )(Z(r )i ; θ)I(Ri =r ). (3.25)
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Although, under ignorability, the first product in braces in (3.24) is irrelevant for the purpose of

estimating θ, for illustration we present the forms of both products over r in (3.24) in this specific

case. Here, the two possible values of r are r = (1, 1) and r = (0, 1), and Z(r ) = (Y , V ) when r = (1, 1)

and Z(r ) = V when r = (0, 1). Thus, when r = (1, 1),

pR|Z(r )
(r |Z(r )i ;ψ) = pr{Ri = (1, 1)|Yi , Vi ;ψ} = pr{Ri = (1, 1)|Vi ;ψ} = π(Vi ;ψ),

and when r = (0, 1),

pR|Z(r )
(r |Z(r )i ;ψ) = pr{Ri = (0, 1)|Vi ;ψ} = 1− π(Vi ;ψ),

where π(v ;ψ) is a parametric model for π(v ) depending on ψ. Thus, the first product becomes

∏
r

pR|Z(r )
(r |Z(r )i ;ψ)I(Ri =r ) = {π(Vi ;ψ)}I{Ri =(1,1)}{1− π(Vi ;ψ)}I{Ri =(0,1)}.

Similarly, for the second product in (3.24), i.e., that in (3.25), when r = (1, 1), Z(r̄ ) is null, and thus

pZ(r )(Z(r )i ; θ) =
∫

pZ{(Z(r )i , z(r̄ )); θ}dν(z(r̄ )) = pY |V (Yi |Vi ; θ1) pV (Vi ; θ2);

when r = (0, 1), Z(r̄ ) = Y , and

pZ(r )(Z(r )i ; θ) =
∫

pZ{(Z(r )i , z(r̄ )); θ}dν(z(r̄ )) =
∫

pY |V (y |Vi ; θ1) pV (Vi ; θ2) dy = pV (Vi ; θ2).

Thus, the second product in (3.24) is

∏
r

pZ(r )(Z(r )i ; θ) = {pY |V (Yi |Vi ; θ1) pV (Vi ; θ2)}I{Ri =(1,1)} {pV (Vi ; θ2)}I{Ri =(0,1)}

= {pY |V (Yi |Vi ; θ1)}I{Ri =(1,1)} pV (Vi ; θ2).

(Why?) The observed data likelihood (3.25) is then

N∏
i=1

{pY |V (Yi |Vi ; θ1)}I{Ri =(1,1)} pV (Vi ; θ2) =

{
N∏

i=1

{pY |V (Yi |Vi ; θ1)}I{Ri =(1,1)}

} {
N∏

i=1

pV (Vi ; θ2)

}
. (3.26)

The MLEs θ̂1 and θ̂2 are found by maximizing (3.26). Note that, under the assumption that θ1 and θ2

are variation independent, the MLE θ̂1 is found by maximizing the product of the pY |V (Yi |Vi ; θ1) over

the complete cases for whom Ri = (1, 1), and θ̂2 is found by maximizing the product of pV (Vi ; θ2)

over all individuals (recalling that V is observed for all individuals). The MLEs are substituted into

(3.23) to obtain µ̂.
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EXAMPLE 2: Bivariate normal model. Suppose that Z = (Y1, Y2), where Y1, Y2 are scalar out-

comes, and define Y = (Y1, Y2)T . Assume that Y is bivariate normal, which we write as

Y ∼ N (µ,Σ), µ = (µ1,µ2)T , Σ =

 σ2
1 σ12

σ12 σ2
2

 .

Then the full data model is

pZ (z; θ) = pY (y ; θ) =
1

2π|Σ|1/2 exp{−(y − µ)TΣ−1(y − µ)/2}

=
1

2πσ1σ2(1− ρ2)1/2 exp
[
− 1

2(1− ρ2)

{
y1 − µ1)2

σ2
1

− 2ρ
σ1σ2

(y1 − µ1)(y2 − µ2) +
(y2 − µ2)2

σ2
2

}]
(3.27)

where σ12 = ρσ1σ2, and θ = (µ1,σ2
1,µ2,σ2

2,σ12)T .

Define R = (R1, R2) as usual, and assume that there are three possible values r of R:

(i) Y1, Y2 are both observed, r = (1, 1), Z(r ) = Y

(ii) Y1 is observed, Y2 is missing, r = (1, 0), Z(r ) = Y1

(iii) Y1 is missing, Y2 is observed, r = (0, 1), Z(r ) = Y2.

Interest focuses on estimation of θ based on the observed data.

Assuming the separability condition, under ignorability, the MLE θ̂ is found by maximizing the ob-

served data likelihood in (3.21). We thus characterize pZ(r )(z(r ); θ) under each of (i) – (iii) above:

(i) r = (1, 1), Z(r ) = Y , and hence pZ(r )(z(r ); θ) = pY (y ; θ) given in (3.27).

(ii) r = (1, 0), Z(r ) = Y1. For the multivariate normal distribution, it is well known that the distribution

of each component is normal with the corresponding mean and variance. Accordingly,

pz(r )(Z(r ); θ) = pY1(y1; θ1),

where pY1(y1; θ1) is the N (µ1,σ2
1) density depending on θ1 = (µ1,σ2

1)T .

(iii) r = (0, 1), Z(r ) = Y2. Similarly,

pz(r )(Z(r ); θ) = pY2(y2; θ2), θ2 = (µ2,σ2
2)T ,

where pY2(y2; θ2) is the N (µ2,σ2
2) density.
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Combining, the observed data likelihood in (3.21) is given by{
N∏

i=1

{pY (Yi ; θ)}I{Ri =(1,1)}

} {
N∏

i=1

{pY1(Yi1; θ1)}I{Ri =(1,0)}

} {
N∏

i=1

{pY2(Yi2; θ2)}I{Ri =(0,1)}

}
, (3.28)

where θ = (θT
1 , θT

2 ,σ12)T .

PROPERTIES OF THE MLE: It is important to recognize that, although calculation of the MLE θ̂ itself

does not require specification of a model for the missingness mechanism, the large sample properties

of the estimator do depend on the missingness mechanism, as we now demonstrate.

We continue to assume MAR, so that the missingness mechanism is ignorable. Under regularity

conditions, as in Section 3.1, with the full data model correctly specified,

N1/2(θ̂ − θ0) L−→ N [0, {I(θ0)}−1], (3.29)

where I(θ0) is the expected information matrix, and

I(θ) = −Eθ

(
∂2

∂θ∂θT

[∑
r

I(R = r ) log{pZ(r )(Z(r ); θ)}

])
= Eθ

{
Sθ(R, Z(R); θ)Sθ(R, Z(R); θ)T

}
. (3.30)

In (3.30), the observed data score vector is, from (3.20),

Sθ(R, Z(R); θ) =
∂

∂θ

[∑
r

I(R = r ) log{pZ(r )(Z(r ); θ)}

]
. (3.31)

In fact, (3.31) may be shown to be equivalent to

Sθ(R, Z(R); θ) =
∑

r

I(R = r )Eθ
{

SF
θ (Z ; θ)|Z(r )

}
(3.32)

=
∑

r

I(R = r )Eθ
{

SF
θ (Z ; θ)|R = r , Z(r )

}
= Eθ

{
SF
θ (Z ; θ)|R, Z(R)

}
. (3.33)

We first show (3.32). From (3.19), we have

log{pZ(r )(Z(r ); θ)} = log
{∫

pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))
}

,

so that the score vector is

Sθ(R, Z(R); θ) =
∑

r

I(R = r )
∂

∂θ

[
log
{∫

pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))
}]

.

This may be rewritten, interchanging the order of differentiation and integration, as

Sθ(R, Z(R); θ) =
∑

r

I(R = r )

∫
∂

∂θ

[
pZ{(Z(r ), z(r̄ )); θ}

]
dν(z(r̄ ))∫

pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))
.
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Dividing and multiplying by pZ{(Z(r ), z(r̄ )); θ} in the integrand of the numerator yields

Sθ(R, Z(R); θ) =
∑

r

I(R = r )

∫
SF
θ {(Z(r ), z(r̄ )); θ}pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))∫

pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))
(3.34)

=
∑

r

I(R = r )
∫

SF
θ {(Z(r ), z(r̄ )); θ}pZ |Z(r )

{(Z(r ), z(r̄ ))|Z(r ); θ}dν(z(r̄ ))

=
∑

r

I(R = r )
∫

SF
θ {(Z(r ), z(r̄ )); θ}pZ(r̄ )|Z(r )

{z(r̄ )|Z(r ); θ}dν(z(r̄ )). (3.35)

The equality in (3.35) is a consequence of the fact that

pZ |Z(r )
{(Z(r ), z(r̄ ))|Z(r ); θ} =

pZ{(Z(r ), z(r̄ )); θ}
pZ(r )(Z(r ); θ)

= pZ(r̄ )|Z(r )
{z(r̄ )|Z(r ); θ},

where we are regarding Z(r ) as fixed in these calculations. The expression in (3.35) is equivalent to

(3.32). Note that nowhere in this argument did we use the MAR assumption.

We now assume MAR and demonstrate the first equality in (3.33); the second equality is by definition.

To show this, it suffices to show that, for fixed r ,

pZ |R,Z(R)
(z|r , z(r ); θ,ψ) = pZ |R,Z(R)

(z|r , z(r ); θ) = pZ |Z(r )
(z|z(r ); θ).

This is true because, when Z(r ) = z(r ),

pZ |R,Z(R)
(z|r , z(r ); θ,ψ) =

pR,Z (r , z; θ,ψ)∫
pR,Z (r , z; θ,ψ) dν(z(r̄ ))

=
pR|Z (r |z;ψ)pZ (z; θ)∫

pR|Z (r |z;ψ)pZ (z; θ) dν(z(r̄ ))

=
pR|Z(r )

(r |z(r );ψ)pZ (z; θ)

pR|Z(r )
(r |z(r );ψ)

∫
pZ (z; θ) dν(z(r̄ ))

(3.36)

=
pZ (z; θ)∫

pZ (z; θ) dν(z(r̄ ))
= pZ |Z(r )

(z|z(r ); θ),

where the equality in (3.36) follows by MAR.

Analogous to (3.6) in the full data case, the observed information matrix for the observed data is

I(R˜ , Z˜ (R˜); θ) = −
N∑

i=1

∂2

∂θ∂θT

[∑
r

I(Ri = r ) log{pZ(r )(Z(r )i ; θ)}

]
. (3.37)

Taking (3.29) together with (3.30) and (3.31) makes clear that the properties of θ̂ depend on the

distribution of (R, Z ). We discuss methods for computation of standard errors for θ̂ later in this chapter.

Note also that the MLE θ̂ may be equivalently expressed as the solution to the score equation

N∑
i=1

Sθ(Ri , Z(Ri )i ; θ) = 0. (3.38)
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3.4 Expectation-Maximization (EM) algorithm

The foregoing results demonstrate that, under the assumption of MAR, the MLE for θ in a posited

model for the full data pZ (z; θ) can be found in principle by maximizing either of the expressions in

(3.21). As the derivation of this result suggests, however, actual implementation in practice may be

computationally challenging because of the need to calculate the integrals involved, which in most

problems are likely to be analytically intractable.

EXPECTATION-MAXIMIZATION ALGORITHM: The Expectation-Maximization (EM) algorithm is an

iterative numerical technique for maximizing an objective function whose formulation involves unob-

servable latent quantities. Here, the latent quantities are the missing components of Z over which

integration is performed to arrive at the observed data expressions in (3.21).

We first present the generic EM algorithm in the context of maximizing (3.21) and then discuss prac-

tical implications.

Consider the first expression in (3.21),

N∏
i=1

∏
r

pZ(r )(Z(r )i ; θ)I(Ri =r ). (3.39)

The goal is to maximize (3.39) in θ. Note that (3.39) can be written as

N∏
i=1

∏
r

pZ(r )(Z(r )i ; θ)I(Ri =r ) =
N∏

i=1

∏
r

{
pZ (Zi ; θ)

pZ |Z(r )
(Zi |Z(r )i ; θ)

}I(Ri =r )

.

Taking logarithms yields

N∑
i=1

∑
r

I(Ri = r ) log{pZ(r )(Z(r )i ; θ)} =
N∑

i=1

log{pZ (Zi ; θ)} −
N∑

i=1

∑
r

I(Ri = r ) log{pZ |Z(r )
(Zi |Z(r )i ; θ)},

(3.40)

and we equivalently wish to maximize the objective function (3.40).

Now take the conditional expectation of both sides of (3.40) given the observed sample data (R˜ , Z˜ (R˜)).

Because the sample data are iid across i , this is equivalent to taking the conditional expectation of

the i th summand with respect to (Ri , Z(Ri )i ) for i = 1, ... , N. We consider this conditional expectation

for the i th summand in each term in (3.40).
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For the left hand side of (3.40), we have

Eθ′
[∑

r

I(Ri = r ) log{pZ(r )(Z(r )i ; θ)}|Ri , Z(Ri )i

]
=
∑

s

∑
r

I(Ri = r )I(Ri = s) Eθ′
[

log{pZ(r )(Z(r )i ; θ)}|Ri = s, Z(s)i

]
=
∑

r

I(Ri = r )Eθ′
[

log{pZ(r )(Z(r )i ; θ)}|Ri = r , Z(r )i

]
=
∑

r

I(Ri = r ) log{pZ(r )(Z(r )i ; θ)}, (3.41)

where (3.41) follows because all terms in the double sum are equal to zero except when r = s, and

log{pZ(r )(Z(r )i ; θ)} is function of the observed data on i . In (3.41), we emphasize that this expectation

is taken with respect to the distribution of Z evaluated at some value θ′ that may be different from

the value θ in pZ(r )(Z(r )i ; θ); the reason for this will be clear shortly.

Now consider the first term on the right hand side of (3.40). It is straightforward that

Eθ′
[

log{pZ (Zi ; θ)}|Ri , Z(Ri )i

]
=
∑

r

I(Ri = r ) Eθ′
[

log{pZ (Zi ; θ)}|Ri = r , Z(r )i

]
=
∑

r

I(Ri = r ) Eθ′
[

log{pZ (Zi ; θ)}|Z(r )i

]
, (3.42)

where the equality in (3.42) follows as a result of the MAR assumption by an argument similar to that

leading to the first equality in (3.33) (try showing this).

Finally, for a summand in the second term on the right hand side of (3.40), we have

Eθ′
[∑

r

I(Ri = r ) log{pZ |Z(r )
(Zi |Z(r )i ; θ)}|Ri , Z(Ri )i

]
=
∑

s

∑
r

I(Ri = r )I(Ri = s)Eθ′
[

log{pZ |Z(r )
(Zi |Z(r )i ; θ)}|Ri = s, Z(s)i

]
=
∑

s

∑
r

I(Ri = r )I(Ri = s)Eθ′
[

log{pZ |Z(r )
(Zi |Z(r )i ; θ)}|Z(s)i

]
(3.43)

=
∑

r

I(Ri = r )Eθ′
[

log{pZ |Z(r )
(Zi |Z(r )i ; θ)}|Z(r )i

]
, (3.44)

where the equality in (3.43) is a consequence of MAR, and that in (3.44) follows because all terms in

the double sum are equal to zero except when r = s.

Using all of (3.41), (3.42), and (3.44), we thus have from (3.40) that
N∑

i=1

∑
r

I(Ri = r ) log{pZ(r )(Z(r )i ; θ)}

=
N∑

i=1

∑
r

I(Ri = r ) Eθ′
[

log{pZ (Zi ; θ)}|Z(r )i

]
−

N∑
i=1

∑
r

I(Ri = r )Eθ′
[

log{pZ |Z(r )
(Zi |Z(r )i ; θ)}|Z(r )i

]
= Q(θ|θ′)− H(θ|θ′), (3.45)

say. That is, the objective function to be maximized in θ to obtain the MLE can be expressed as in

(3.45) for any fixed value θ′ of θ.
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The result in (3.45) is the basis for the iterative procedure known as the EM algorithm.

If we index iterations by t and let θ(t) be the t th iterate, starting from some initial value θ(0), the (t +1)th

iteration of the algorithm involves the following two steps:

E-step. Calculate the conditional Expectation

Q(θ|θ(t)) =
N∑

i=1

∑
r

I(Ri = r )Eθ(t)

[
log{pZ (Zi ; θ)}|Z(r )i

]
. (3.46)

M-step. Maximize Q(θ|θ(t)) in θ to obtain θ(t+1); that is,

θ(t+1) = arg maxθ Q(θ|θ(t)).

Iteration continues until some convergence criterion is satisfied. The value of θ at convergence can

be taken to be the MLE θ̂.

REMARKS:

• The basic idea behind the EM algorithm appeared in applications in the statistical literature for

much of the twentieth century, but it was not until 1977 and a landmark paper (Dempster, Laird,

and Rubin, 1977) that the idea was formalized and presented in generality.

• Note that the E-step can be written as

N∑
i=1

∑
r

I(Ri = r )
∫

log[pZ{(Z(r )i , z(r̄ )); θ}] pZ |Z(r )
{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t)}dν(z(r̄ ))

=
N∑

i=1

∑
r

I(Ri = r )
∫

log[pZ{(Z(r )i , z(r̄ )); θ}] pZ(r̄ )|Z(r )
{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t)}dν(z(r̄ )) (3.47)

=
N∑

i=1

∑
r

I(Ri = r )
∫

log[pZ{(Z(r )i , z(r̄ )); θ}] pZ |R,Z(R)
{(Z(r )i , z(r̄ ))|Ri = r , Z(r )i ; θ(t)}dν(z(r̄ )).

This makes explicit that this step can be viewed as averaging the loglikelihood of the full data

over the (frequentist) predictive distribution of the missing part of Z given the observed,

evaluated at the current iterate θ(t). Under MAR, this predictive distribution for fixed θ and r is

pZ |Z(r )
{(Z(r )i , z(r̄ ))|Z(r )i ; θ} = pZ |R,Z(R)

{(Z(r )i , z(r̄ ))|Ri = r , Z(r )i ; θ} = pZ(r̄ )|Z(r )
(z(r̄ )|Z(r )i ; θ). (3.48)

The last expression is the one that is useful in practice, as it makes clear the interpretation

of predicting missing components of Z from those observed. The predictive distribution, both

from a frequentist and Bayesian point of view, will play a major role in our discussion of multiple

imputation in Chapter 4.
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ALTERNATIVE NOTATION: In the foregoing developments, we have used the notation introduced

in Chapter 1, which makes precise which parts of the full data Z are missing and observed under

a given pattern of missingness. In the literature on missing data, it is customary to present these

arguments using the informal notation

Z = (Z obs, Z mis),

also introduced in Chapter 1. As noted there, it is important to be aware that, in these more informal

arguments, care must be taken to recognize that the dimensions of the quantities Z obs and Z mis for

any individual are not fixed and may be different for different individuals indexed by i . Moreover,

Z obs by itself does not fully characterize the observed data.

RATIONALE FOR THE EM ALGORITHM: We now sketch the usual argument justifying the EM

algorithm. The argument shows that the value of the objective function

N∑
i=1

∑
r

I(Ri = r ) log{pZ(r )(Z(r )i ; θ)}

increases at each iteration of the algorithm.

Consider the difference in the objective function at two successive iterates, which, using (3.45), is

given by

N∑
i=1

∑
r

I(Ri = r ) log{pZ(r )(Z(r )i ; θ(t+1))} −
N∑

i=1

∑
r

I(Ri = r ) log{pZ(r )(Z(r )i ; θ(t))}

= Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t))−
{

H(θ(t+1)|θ(t))− H(θ(t)|θ(t))
}

(3.49)

Trivially, by the definition of θ(t+1), the first term in (3.49) is such that

Q(θ(t+1)|θ(t))−Q(θ(t)|θ(t)) ≥ 0, (3.50)

as θ(t+1) maximizes Q(θ|θ(t)) in θ.

Moreover, we can show that

H(θ(t+1)|θ(t))− H(θ(t)|θ(t)) ≤ 0. (3.51)

Combining (3.50) and (3.51) then shows that the difference (3.49) is nonnegative, from which it follows

that the objective function increases at each iteration.
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To show that (3.51) holds, recall that

H(θ|θ(t)) =
N∑

i=1

∑
r

I(Ri = r )Eθ(t)

[
log{pZ |Z(r )

(Zi |Z(r )i ; θ)}|Z(r )i

]
,

so that (3.51) can be written as

N∑
i=1

∑
r

I(Ri = r )
(

Eθ(t)

[
log{pZ |Z(r )

(Zi |Z(r )i ; θ(t+1))}|Z(r )i

]
− Eθ(t)

[
log{pZ |Z(r )

(Zi |Z(r )i ; θ(t))}|Z(r )i

])
. (3.52)

Consider the difference of expectations in the summand of this expression for any i . We have

Eθ(t)

[
log{pZ |Z(r )

(Zi |Z(r )i ; θ(t+1))}|Z(r )i

]
− Eθ(t)

[
log{pZ |Z(r )

(Zi |Z(r )i ; θ(t))}|Z(r )i

]
=
∫

log[pZ |Z(r )
{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t+1)}] pZ |Z(r )

{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t)}dν(z(r̄ ))

−
∫

log[pZ |Z(r )
{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t)}] pZ |Z(r )

{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t)}dν(z(r̄ ))

=
∫

log[pZ |Z(r )
{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t+1)}] pZ(r̄ )|Z(r )

(z(r̄ )|Z(r )i ; θ(t)) dν(z(r̄ ))

−
∫

log[pZ |Z(r )
{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t)}] pZ(r̄ )|Z(r )

(z(r̄ )|Z(r )i ; θ(t)) dν(z(r̄ )).

Note that in these calculations we are treating Z(r )i as fixed.

This is of the form ∫
log{p2(z)}p1(z) dz −

∫
log{p1(z)}p1(z) dz, (3.53)

identifying pZ |Z(r )
{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t+1)} with p2(z) and pZ |Z(r )

{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t)} with p1(z) and treat-

ing the argument of integration as continuous.

Note that (3.53) can be rewritten as ∫
log
{

p2(z)
p1(z)

}
p1(z) dz,

so that the result follows if we can show that this expression is ≤ 0. Because the logarithm is a

concave function, by Jensen’s inequality, we have∫
log
{

p2(z)
p1(z)

}
p1(z) dz ≤ log

{∫
p2(z)
p1(z)

p1(z) dz
}

= log
{∫

p2(z) dz
}

= 0.

Thus, each summand in (3.52) is ≤ 0, and the result follows.
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REMARKS:

• Under suitable regularity conditions, in general, the EM algorithm is guaranteed to converge

to a stationary point of the objective function (observed data loglikelihood), which could be a

local or global maximum of the objective function or a saddle point.

• Dempster et al. (1977) and Wu (1983) demonstrated that if the objective function has a unique

maximum in θ in the interior of the parameter space, the EM algorithm will converge as t →∞

to the (unique global) maximum.

• In less well-behaved problems, the algorithm may not converge to a unique maximum; situa-

tions like this are discussed by Schafer (1997, Chapter 3).

• In practice, it is advisable to carry out the algorithm starting from several different initial values

θ(0). If the algorithm converges to different values from different starting points, this may indicate

the presence of local maxima. If the algorithm converges to the same value from different

starting points, this may engender confidence that a unique global maximum has been found.

• It may be shown (see, for example, Molenberghs and Kenward, 2007, Section 8.4 or Schafer,

1997, Section 3.3.2) that the EM algorithm converges linearly and that the rate of convergence

is related to the amount of missing information. In practice, the convergence can be extremely

slow. In contrast, the convergence of optimization methods such as the Newton-Raphson

algorithm can be shown to be quadratic, so that if one is able to maximize the observed data

likelihood directly via such techniques, this is likely to be more computationally efficient. There

is thus a tradeoff between the ease of implementation of the EM algorithm and performance.

• A disadvantage is that standard error estimates are not readily available at the conclusion

of the algorithm as they would be, for example, from direct maximization of the observed data

likelihood using optimization techniques such as the Newton-Raphson algorithm, in which the

observed information matrix is calculated at each internal iteration.

We discuss approaches to obtaining standard errors following the EM algorithm shortly.
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PRACTICAL ADVANTAGE: The EM algorithm is particularly attractive in problems where

• Q(θ|θ(t)) is relatively easy to compute (E-step)

• Q(θ|θ(t)) is relatively easy to maximize in θ (M-step).

For a large class of problems, this is the case. From (3.46),

Q(θ|θ(t)) =
N∑

i=1

∑
r

I(Ri = r )Eθ(t)

[
log{pZ (Zi ; θ)}|Z(r )i

]
=

N∑
i=1

Eθ(t)

[
log{pZ (Zi ; θ)}|Ri , Z(Ri )i

]
.

From (3.42), and using the fact that Zi , i = 1, ... , N, and (Ri , Z(Ri )i ), i = 1, ... , N, are iid, we can write

Q(θ|θ(t)) = Eθ(t)

[ N∑
i=1

log{pZ (Zi ; θ)}|R˜ , Z˜ (R˜)

]
= Eθ(t)

[
log{pZ˜(Z˜ ; θ)|R˜ , Z˜ (R˜)

]
,

where

pZ˜(Z˜ ; θ) =
N∏

i=1

pZ (Zi ; θ)

is the joint density of the full sample data.

The case where log{pZ˜(Z˜ ; θ)} is linear in sufficient statistics enjoys these advantages. For exam-

ple, suppose that pZ (z; θ) belongs to an exponential family, where θ is (p× 1), so that, expressed in

natural or canonical form,

pZ˜(Z˜ ; θ) = b(Z˜) exp

{ p∑
`=1

T`(Z˜)η`(θ)− a(θ)

}
,

for known functions b( · ) and a( · ), where η`(θ), ` = 1, ... , p, are the natural parameters, and T`(Z˜),

` = 1, ... , p, are the associated sufficient statistics. Then

log{pZ˜(Z˜ ; θ)} = log{b(Z˜)} +
p∑
`=1

T`(Z˜)η`(θ)− a(θ). (3.54)

Taking derivatives of (3.54) with respect to the elements of θ and setting equal to zero yields the MLE.

If we define

q`(θ) = Eθ{T`(Z˜)}

then it is well known (see ST 522) that this results in solving the p moment equations

q`(θ) = T`(Z˜), ` = 1, ... , p, (3.55)

which is a set of p equations in p unknowns (elements of θ).
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In this situation, the E- and M-steps are straightforward. At the (t + 1)th iteration, the E-step involves

finding

Eθ(t)

[
log{b(Z˜)} +

p∑
`=1

T`(Z˜)η`(θ)− a(θ)|R˜ , Z˜ (R˜)

]
, (3.56)

and then the M-step involves maximizing (3.56) in θ`, ` = 1, ... , p. But from (3.55), this maximization

will involve only

Eθ(t){T`(Z˜)|R˜ , Z˜ (R˜)}, ` = 1, ... , p.

Thus, the algorithm at the (t + 1)th iteration reduces to the following:

E-step. Find Eθ(t){T`(Z˜)|R˜ , Z˜ (R˜)}, ` = 1, ... , p.

M-step. Find θ(t+1) as the solution to the p equations

q`(θ) = Eθ(t){T`(Z˜)|R˜ , Z˜ (R˜)}, ` = 1, ... , p.

We now demonstrate how this works in two examples.

EXAMPLE 2, CONTINUED: Bivariate normal model. The case where pZ (z; θ) is bivariate normal as

in (3.27) is an example where the EM algorithm is straightforward. Recall Z = (Y1, Y2), Y = (Y1, Y2)T ,

R = (R1, R2), and the three possible situations are

(i) Y1, Y2 are both observed, r = (1, 1), Z(r ) = Y

(ii) Y1 is observed, Y2 is missing, r = (1, 0), Z(r ) = Y1

(iii) Y1 is missing, Y2 is observed, r = (0, 1), Z(r ) = Y2.

The full data density is again

pZ (z; θ) = pY (y ; θ) =
1

2π|Σ|1/2 exp{−(y − µ)TΣ−1(y − µ)/2},

µ = (µ1,µ2)T , vech(Σ) = (σ2
1,σ12,σ2

2)T , where vech(A) is the vector of distinct elements of a symmetric

matrix A, so that θ = (µ1,σ2
1,µ2,σ2

2,σ12)T , and p = 5.

By the calculations above, it can be shown (try it) that the p = 5 sufficient statistics are

T1(Z˜) =
N∑

i=1

Yi1, T2(Z˜) =
N∑

i=1

Y 2
i1, T3(Z˜) =

N∑
i=1

Yi2, T4(Z˜) =
N∑

i=1

Y 2
i2, T5(Z˜) =

N∑
i=1

Yi1Yi2. (3.57)
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Thus, the moment equations (3.55) yield

µ1 = N−1
N∑

i=1

Yi1, σ2
1 = N−1

N∑
i=1

Y 2
i1 − (µ1)2, µ2 = N−1

N∑
i=1

Yi2, σ2
2 = N−1

N∑
i=1

Y 2
i2 − (µ2)2,

σ12 = N−1
N∑

i=1

Yi1Yi2 − (µ1µ2)2, (3.58)

Thus, from (3.57) and (3.58), recalling that Zi , i = 1, ... , N, and (Ri , Z(Ri )i ), i = 1, ... , N, are iid, the

E-step involves finding

E(Y1|Z(r )), E(Y 2
1 |Z(r )), E(Y2|Z(r )), E(Y 2

2 |Z(r )), E(Y1Z2|Z(r )), (3.59)

for the three cases (i) – (iii) above. Trivially, in case (i), r = (1, 1), the conditional expectations (3.59)

are equal to the observed values Y1, Y 2
1 , Y2, Y 2

2 , Y1Y2. For (ii), r = (1, 0), Z(r ) = Y1,

E(Y1|Z(r )) = Y1, E(Y 2
1 |Z(r )) = Y 2

1 ,

while, by standard properties of the multivariate normal distribution,

E(Y2|Z(r )) = E(Y2|Y1) = µ2 + σ12(Y1 − µ1)/σ2
1,

E(Y 2
2 |Z(r )) = E(Y 2

2 |Y1) = σ2
2 − σ2

12/σ
2
1 + {E(Y2|Y1)}2,

E(Y1Y2|Z(r )) = E(Y1Y2|Y1) = Y1E(Y2|Y1).

For (iii), r = (0, 1), reverse the roles of Y1 and Y2 in these expressions.

Combining, the EM-algorithm takes the following form. At the (t + 1) iteration

E-step. With θ(t) = (µ(t)
1 ,σ2(t)

1 ,µ(t)
2 ,σ2(t)

2 ,σ(t)
12)T , calculate

T (t)
1 =

N∑
i=1

∑
r

I(Ri = r )Eθ(t)(Yi1|Z(r )i ), T (t)
2 =

N∑
i=1

∑
r

I(Ri = r )Eθ(t)(Y 2
i1|Z(r )i ),

T (t)
3 =

N∑
i=1

∑
r

I(Ri = r )Eθ(t)(Yi2|Z(r )i ), T (t)
4 =

N∑
i=1

∑
r

I(Ri = r )Eθ(t)(Y 2
i2|Z(r )i ),

T (t)
5 =

N∑
i=1

∑
r

I(Ri = r )Eθ(t)(Yi1Yi2|Z(r )i ).

M-step. Update θ(t+1) as

µ(t+1)
1 = T (t)

1 /N, σ2(t+1)
1 = T (t)

2 /N −
(
µ(t+1)

1

)2
, µ(t+1)

2 = T (t)
3 /N, σ2(t+1)

2 = T (t)
4 /N −

(
µ(t+1)

2

)2
,

σ(t+1)
12 = T (t)

5 /N −
(
µ(t+1)

1 µ(t+1)
2

)
.
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EXAMPLE 3. Multivariate normal model with monotone missingness (dropout). Consider again

the simple longitudinal situation of EXAMPLE 3 of Chapter 1, in which a scalar outcome is collected

at each of T times t1, ... , tT , so that the full data are Z = (Y1, ... , YT ). Let Y = (Y1, ... , YT )T , and

suppose that we assume that Y is N (µ,Σ) for (T × 1) mean vector µ and (T × T ) covariance matrix

Σ. Thus,

θ = {µT , vech(Σ)T}T ,

and the full data density pZ (z; θ) is

pZ (z; θ) = pY (y ; θ) =
1

(2π)T |Σ|T/2 exp{−(y − µ)TΣ−1(y − µ)/2}.

It is straightforward to deduce that the sufficient statistics may be summarized as
∑N

i=1 Yi and∑N
i=1 YiY T

i and that the moment equations (3.55) are

µ = N−1
N∑

i=1

Yi , Σ = N−1
N∑

i=1

YiY T
i − µµ

T . (3.60)

Suppose that individuals drop out, so that there is monotone missingness. Then with R =

(R1, ... , RT ), R can take on T possible values r given by

r (0) = (0, 0, ... , 0), r (1) = (1, 0, ... , 0), ... , r (T ) = (1, 1, ... , 1).

It is convenient to use the dropout notation defined in Chapter 1; i.e.,

D = 1 +
T∑

j=1

Rj ,

so that R = r (j) corresponds to D = j + 1. Thus, when D = j + 1, write Z(j+1) = (Y1, ... , Yj ) to denote

the part of Z that is observed. Note that Z(1) is thus null, as no part of Y is observed, and Z(T +1) =

(Y1, ... , YT ).

The E-step thus involves finding for any j = 0, ... , T

E(Y |Z(j+1)), E(YY T |Z(j+1)),

Define Y(j) = (Y1, ... , Yj )T , j = 1, ... , T , so that, for any j = 1, ... , T , Y can be partitioned as

Y =

 Y(j)

Y(j̄)

 .
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When j = 0, so that D = 1, there is no contribution to the likelihood, so consider j = 1, ... , T . For fixed

j , partition µ and Σ analogous to Y as

µ =

 µ(j)

µ(j̄)

 Σ =

 Σ(jj) Σ(j j̄)

Σ(j̄ j) Σ(j̄ j̄)

 .

Then it is straightforward to derive that (try it)

E(Y |Z(j+1)) = E(Y |Y(j)) =

 Y(j)

µ(j̄) + Σ(j̄ j)Σ
−1
(j j̄)

(Y(j) − µ(j))

 ,

E(YY T |Z(j+1)) = E(YY T |Y(j)) =

 0 0

0 Σ(j̄ j̄) − Σ(j̄ j)Σ
−1
(jj) Σ(j j̄)

 + E(Y |Y(j))E(Y |Y(j))T .

Thus, the (t + 1)th iterate of the EM algorithm is as follows.

E-step. With θ(t) = {µ(t) T , vech(Σ)(t) T}T , define

T (t)
1 =

N∑
i=1

T∑
j=1

I(Di = j + 1)Eθ(t)(Yi |Y(j)i ), T (t)
2 =

N∑
i=1

T∑
j=1

I(Di = j + 1)Eθ(t)(YiY T
i |Y(j)i ).

M-step. Update θ(t+1) as

µ(t+1) = N−1T (t)
1 , Σ(t+1) = N−1T (t)

2 − µ
(t+1)µ(t+1) T .

REMARKS:

• Schafer (1997, Section 5.3) presents a detailed derivation of the EM algorithm for the situation

in EXAMPLE 3 in the more general case of nonmonotone (or arbitrary patterns of) missing-

ness.

• In fact, the EM algorithm for the case where the full data Z are a vector of outcomes Y that are

distributed as multivariate normal, interest focuses on estimation of the mean and covariance

matrix, and arbitrary patterns of missingness is implemented in the SAS procedure proc mi.

• These examples are cases where the E-step is straightforward and the solution to the maxi-

mization problem in the M-step is available in a closed form. This is generally not the case in

most problems.
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MONTE CARLO EM ALGORITHM: When interest focuses on more complex statistical models for

the full data, it is often the case that the E-step may not be carried out in a closed form. That is, it is

not possible to calculate the summand in

Q(θ|θ(t)) =
N∑

i=1

∑
r

I(Ri = r )Eθ(t)

[
log{pZ (Zi ; θ)}|Z(r )i

]
=

N∑
i=1

Eθ(t)

[
log{pZ (Zi ; θ)}|Ri , Z(Ri )i

]
.

directly. In particular, recall from (3.47) that this involves calculation of the integrals in

N∑
i=1

∑
r

I(Ri = r )
∫

log[pZ{(Z(r )i , z(r̄ )); θ}] pZ |Z(r )
{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t)}dν(z(r̄ ))

=
N∑

i=1

∑
r

I(Ri = r )
∫

log[pZ{(Z(r )i , z(r̄ )); θ}] pZ(r̄ )|Z(r )
{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t)}dν(z(r̄ ))

=
N∑

i=1

∑
r

I(Ri = r )
∫

log[pZ{(Z(r )i , z(r̄ )); θ}] pZ |R,Z(R)
{(Z(r )i , z(r̄ ))|Ri = r , Z(r )i ; θ(t)}dν(z(r̄ )).

for each i and r for which Ri = r .

One practical approach is to carry out these integrations numerically. The idea is to make a large

number S of random draws from the (frequentist) predictive distribution (3.48),

pZ(r̄ )|Z(r )
{(Z(r )i , z(r̄ ))|Z(r )i ; θ(t)},

for each individual i and value r where Ri = r , z(1)
(r̄ )i , ... , z(S)

(r̄ )i , say, and approximate the integrals for

each i by

S−1
S∑

s=1

log[pZ{(Z(r )i , z(s)
(r̄ )i ); θ}]. (3.61)

Then Q(θ|θ(t)) can be approximated numerically and the numerical approximation maximized at the

M-step.

This general approach is referred to as a Monte Carlo (MCEM) EM algorithm, as the E-step is

carried out by Monte Carlo integration as in (3.61), and was first proposed by Wei and Tanner (1990).

Of course, a requirement is a way to generate random draws from the predictive distribution.

Given that the EM algorithm is already slow to converge, incorporating potentially computationally

intensive Monte Carlo integration into each E-step can make the algorithm even more unwieldy. More-

over, because Monte Carlo error is introduced into the E-step, it is no longer guaranteed that the

likelihood need increase at every iteration.
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These features make the choice of S and monitoring convergence critical. Wei and Tanner (1990)

recommend using small values of S in the initial stages and be increasing S as the algorithm moves

closer to convergence. They also recommend monitoring convergence by plotting successive iterates

θ(t) against t and, when the values appear to stabilize, the process may be terminated or continued

with a larger value of S.

Variations on this theme have been proposed.

STANDARD ERRORS: As noted above, the observed information matrix (3.37) is not readily available

as a by-product of the EM algorithm. Accordingly, standard errors for θ̂ must be calculated explicitly.

Louis (1982) describes how to compute the observed information matrix, as we now demonstrate.

From (3.37), the observed information matrix is

I(R˜ , Z˜ (R˜); θ) = −
N∑

i=1

∂2

∂θ∂θT

[∑
r

I(Ri = r ) log{pZ(r )(Z(r )i ; θ)}

]
,

which, from (3.31), can be written equivalently as

−
N∑

i=1

∂

∂θT {Sθ(Ri , Z(Ri )i ; θ)}. (3.62)

Recall from (3.2) that

SF
θ (Z ; θ) =

∂

∂θ
log{pZ (Z ; θ)},

and define similarly

BF
θ (Z ; θ) = − ∂2

∂θ∂θT log{pZ (Z ; θ)}.

From (3.34), we have

Sθ(R, Z(R); θ) =
∑

r

I(R = r )

∫
SF
θ {(Z(r ), z(r̄ )); θ}pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))∫

pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))
. (3.63)

Thus, to find (3.62), we must take the partial derivative of (3.63) with respect to θ.
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The derivative of the quotient in the summand in (3.63) for a fixed r may be found by using the

“quotient rule.” We obtain

∂

∂θT {Sθ(R, Z(R); θ)}

=
∑

r

I(R = r )

−
∫

BF
θ {(Z(r ), z(r̄ )); θ}pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))∫

pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))

+

∫
SF
θ {(Z(r ), z(r̄ )); θ}SF

θ {(Z(r ), z(r̄ )); θ}T pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))∫
pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))

−


∫

SF
θ {(Z(r ), z(r̄ )); θ}pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))∫

pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))



∫

SF
θ {(Z(r ), z(r̄ )); θ}T pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))∫

pZ{(Z(r ), z(r̄ )); θ}dν(z(r̄ ))




=
∑

r

I(R = r )
[
− Eθ{BF

θ (Z ; θ)|Z(r )} + Eθ{SF
θ (Z ; θ)SF

θ (Z ; θ)T |Z(r )}

−Eθ{SF
θ (Z ; θ)|Z(r )}Eθ{SF

θ (Z ; θ)T |Z(r )}
]
.

Thus, the observed information matrix can be written as

I(R˜ , Z˜ (R˜); θ) = −
N∑

i=1

∑
r

I(Ri = r )
[
− Eθ{BF

θ (Zi ; θ)|Z(r )i} + Eθ{SF
θ (Zi ; θ)SF

θ (Zi ; θ)T |Z(r )i}

−Eθ{SF
θ (Zi ; θ)|Z(r )i}Eθ{SF

θ (Zi ; θ)T |Z(r )i}
]
. (3.64)

REMARKS:

• Although (3.64) does provide an expression for the observed information matrix, it still involves

derivation of some rather complicated quantities. Consequently, although it is discussed in

books on missing data methods, it is not widely used nowadays in practice.

• A host of other methods has been proposed. For example, Meng and Rubin (1991) propose

what they call the “supplemental” EM (SEM) algorithm, which allows standard errors to be

calculated given code for computing the full data information matrix.
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• With the advent of modern computing power, use of the bootstrap has been proposed. Here,

one constructs the bth bootstrap data set by sampling N individuals with replacement from the

original data set then runs the EM algorithm on the sampled data set to obtain an estimate

θ̂b, say. This is repeated B times, and the covariance matrix is approximated by the sample

covariance matrix of θ̂b, b = 1, ... , B. Taking B to be 100 to 250 is generally sufficient. Obviously,

this is quite computationally intensive and is only feasible when the EM algorithm runs fairly

quickly, but if it is, it is straightforward.

MISSING INFORMATION PRINCIPLE: The result (3.64) is often interpreted as demonstrating a

concept referred to as the missing information principle. The first term on the right hand side of

(3.64) is

−
N∑

i=1

∑
r

I(Ri = r ) Eθ

[
∂2

∂θ∂θT log{pZ (Zi ; θ)}|Z(r )i

]
= −

N∑
i=1

Eθ

[
∂2

∂θ∂θT log{pZ (Zi ; θ)}|Ri , Z(Ri )i

]
.

(3.65)

This can be interpreted as the expectation of the full data observed information given the observed

data, which we denote as IF (R˜ , Z˜ (R˜); θ). It is straightforward to see that

Eθ{IF (R˜ , Z˜ (R˜); θ)} = NIF (θ).

The second and third terms on the right hand side of (3.64), taken together, can likewise be seen to

be

IM (R˜ , Z˜ (R˜); θ) =
N∑

i=1

varθ{SF
θ (Zi ; θ)|Ri , Z(Ri )i}, (3.66)

where for each i the summand is the covariance matrix of the full data score vector SF
θ (Zi ; θ) given

the observed data on i . Defining IM (θ) = Eθ[varθ{SF
θ (Z ; θ)|R, Z(R)}], note that

Eθ{IM (R˜ , Z˜ (R˜); θ)} = NIM (θ).

Combining (3.64)-(3.66), we have

IF (R˜ , Z˜ (R˜); θ) = I(R˜ , Z˜ (R˜); θ) + IM (R˜ , Z˜ (R˜); θ) (3.67)

The interpretation is that the expectation of the full data observed information, conditional on the

observed data, is equal to the observed information plus an additional term representing how they

differ. Consequently, from the point of view of (3.67), IM (R˜ , Z˜ (R˜); θ) in (3.66) has been interpreted as

the “missing information” or “lost information” resulting from not observing the full data. Thus, (3.67)

has been referred to as the missing information principle.
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Taking the expectation of both sides of (3.67) and recalling that N−1Eθ{I(R˜ , Z˜ (R˜); θ)} = I(θ), yields

the unconditional statement

IF (θ) = I(θ) + IM (θ). (3.68)

The expression (3.68) has also been referred to as the missing information principle; in fact, this is the

result that was derived in the original paper by Orchard and Woodbury (1972) in which this concept

was first described. They did this directly by noting that, from (3.4), IF (θ) = varθ{SF
θ (Z ; θ)}, and then

writing this as the sum of two terms using the law of total variance (also known as Eve’s law or the

conditional variance formula). This derivation is left as an exercise for the diligent student.

3.5 Inference in practice

The foregoing results demonstrate that, for a likelihood-based analysis under the assumption of

MAR, implemented via direct maximization of the observed data likelihood or using the EM algorithm,

achieving valid assessments of uncertainty (e.g., standard errors) for estimators for components of θ

of interest in the full data model can be challenging. As noted in the last section, one approach in

either case is to use a nonparametric bootstrap however, this can be computationally intensive.

APPROXIMATE PRACTICAL APPROACH: An alternative, approximate approach is common in

practice in the context of longitudinal data analysis via popular models; e.g., for continuous longitu-

dinal outcomes, the linear mixed effects model. Here, the full data model boils down to assuming

that the intended full longitudinal response vector Y = (Y1, ... , YT )T is distributed as multivariate

normal (possibly conditional on covariates), with posited structures for the population mean vector

and covariance matrix of Y depending on elements of the parameter θ.

Under the conditions that

(i) the assumptions of multivariate normality and the forms of the population mean and covariance

matrix are correct, so that the full data model is correctly specified , with true value θ0 of θ,

and

• (ii) the assumptions of separability and MAR are also correct ,

then, analogous to the demonstration in EXAMPLE 2 in the simplest case bivariate Y (so T = 2), as

in (3.28), the observed data likelihood (3.21) is also that of a multivariate normal.
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• Specifically, the observed data likelihood (3.21),

N∏
i=1

∏
r

pZ(r )(Z(r )i ; θ)I(Ri =r ), (3.69)

is exactly that one would obtain by treating the observed data as if they were the intended

data; that is, if the numbers of components in Yi that are observed under the MAR mechanism

for each individual i had been fixed in advanced.

• Accordingly, under MAR, the estimator obtained by maximizing the “usual” likelihood treating

the lengths of the response vectors Yi as if they were fixed in advance is the same as that

maximizing the observed data likelihood, θ̂, and thus, by standard likelihood theory, should be

a consistent estimator for θ0.

• In fact, a little thought reveals that, in general, likelihood ratio test statistics for comparing, for

example, nested models for the full data where the null hypothesis sets some components of

θ to zero, based on observed data likelihoods (3.69) for competing “full” and “reduced” models

will yield valid inferences. This is because in the “actual” observed data likelihood based on

(3.20), namely,
N∏

i=1

∏
r

pR|Z(r )
(r |Z(r )i ;ψ)I(Ri =r )

∏
r

pZ(r )(Z(r )i ; θ)I(Ri =r )

including a model for the missingness mechanism, the missingness model will be estimated

identically under the “full” and “reduced” full data models. This model thus appears in both the

numerator and denominator of the likelihood ratio for each i and cancels, leaving the likelihood

ratio statistic to depend only on (3.69) under the “full” and “reduced” models.

• Although the developments in the last section suggest otherwise, one would thus also hope

that standard errors for the components of θ̂ can be obtained from the expected information

matrix for the “usual” likelihood treating the lengths of the Yi as fixed in advance. As we now

demonstrate in a very simple example, this is not the case.

EXAMPLE 4: Consider again the bivariate full data model in EXAMPLE 2 with Z = (Y1, Y2) and

Y = (Y1, Y2)T ∼ N (µ,Σ), µ = (µ1,µ2)T , Σ =

 σ2
1 σ12

σ12 σ2
2

 , (3.70)

θ = (µ1,µ2,σ2
1,σ12,σ2

2)T . Suppose we are interested in inference on µ = (µ1,µ2)T . Under the as-

sumption that this model is correctly specified, there are true values µ0 and Σ0 that correspond to the

true bivariate normal distribution generating the data.
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Suppose that Y1 is always observed and only Y2 is possibly missing. Thus, R can take on two

possible values, (1, 1), and (1, 0). Let C = 1 if R = (1, 1) and C = 0 if R = (1, 0). The observed data

likelihood is then {
N∏

i=1

{pY (Yi ; θ)}I{Ci =1}

} {
N∏

i=1

{pY1(Yi1; θ1)}I{Ci =0}

}
(3.71)

where θ1 = (µ1,σ2
1)T , pY (y ; θ) is the N (µ,Σ) density, and pY1(y1; θ1) is the N (µ1,σ2

1) density.

As above, the observed data likelihood (3.71) is exactly that obtained by treating the observed part

of Yi for each i as if it were planned in advance. Thus, if for individual i only Yi1 is observed, i ’s

contribution to (3.71) is the same as it would be if it were planned in advance to collect only Y1 on

this individual.

The loglikelihood corresponding to (3.71) is

` = (1/2)
N∑

i=1

[
I(Ci = 1){− log |Σ|−(Yi−µ)TΣ−1(Yi−µ)}+I(Ci = 0){− logσ2

1−(Yi1−µ1)2/σ2
1}
]
. (3.72)

Write the estimators maximizing (3.72) as µ̂ and Σ̂.

It is straightforward (and left as an exercise for the diligent student) to show that the upper left (2× 2)

block of the observed information matrix (3.37) is

− ∂2`

∂µ∂µT =
N∑

i=1

I(Ci = 1)Σ−1 + I(Ci = 0)

 1/σ2
1 0

0 0

 , (3.73)

Note that (3.73) depends only on the Ci and not the Yi . Let π = pr(C = 1). It is then straightforward

that the upper left (2× 2) block of the expected information matrix I(θ0) is

Iµµ(θ0) = πΣ−1
0 + (1− π)

 1/σ2
1,0 0

0 0

 , (3.74)

which can be estimated in practice by

N−1̂Iµµ = (N1/N)Σ̂−1 + {(N − N1)/N}

 1/σ̂2
1 0

0 0

 , (3.75)

where N1 =
∑N

i=1 I(Ci = 1), and N1/N is an estimator for π.
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Defining

E11 =

 1 0

0 0

 , E12 =

 0 1

1 0

 , E22 =

 0 0

0 1

 ,

the upper right (2× 3) block has columns

− ∂2`

∂µ∂σ2
1

=
N∑

i=1

I(Ci = 1)Σ−1E11Σ
−1

 Yi1 − µ1

Yi2 − µ2

 + I(Ci = 0)(1/σ4
1)

 Yi1 − µ1

0

 (3.76)

− ∂2`

∂µ∂σ12
=

N∑
i=1

I(Ci = 1)Σ−1E12Σ
−1

 Yi1 − µ1

Yi2 − µ2

 (3.77)

− ∂2`

∂µ∂σ2
2

=
N∑

i=1

I(Ci = 1)Σ−1E22Σ
−1

 Yi1 − µ1

Yi2 − µ2

 ,

 . (3.78)

and of course the lower left (3× 2) block has rows that are the transposes of (3.76)-(3.78).

First, suppose that in fact the missingness mechanism is MCAR. Under MCAR, missingness is com-

pletely unrelated to Y , so that whether or not Y2 is missing is effectively the same as if it were

planned in advance to collect Y2 or not. Under this condition, it is straightforward to demonstrate via

a conditioning argument (try it) that the expectations of (3.76)-(3.78) are equal to zero. Thus, the

expected information matrix I(θ0) is block diagonal, and it follows that the estimator µ̂ maximizing

(3.72)

N1/2(µ̂− µ0) L−→ N [0, {Iµµ(θ0)}−1], (3.79)

and thus an approximate sampling distribution for µ̂ is

µ̂
·∼ N{µ0, (̂Iµµ)−1}. (3.80)

The results (3.79)-(3.80) are exactly those that arise if the lengths of the vectors Yi were fixed in

advance.

Now suppose that the missingness mechanism is MAR. The form of Iµµ(θ0) in (3.74) and thus the

estimator N−1̂Iµµ in (3.75) are unchanged. However , it can be shown by a conditioning argument,

left as an exercise for the inquisitive student, that the expectations of (3.76)-(3.78) are no longer

equal to zero. Accordingly, I(θ0) is not block diagonal, so that the results (3.79)-(3.80) yielding

an approximate sampling distribution for µ̂ are no longer valid. To obtain the correct approximate

sampling distribution, one must derive the upper left (2 × 2) block of the (5 × 5) matrix {I(θ0)}−1,

which can be estimated by the upper left (2× 2) block of an estimator for this full matrix.
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Although we showed this in this very simple example, the implications hold for more general full data

models, such as longitudinal data models as above, as follows:

• In these more complex full data models, standard software implementing maximum likelihood

estimation based on the observed data likelihood by default treats the lengths of the Yi as if

they were fixed in advance, and accordingly reports standard errors and confidence intervals

for parameters characterizing the mean of Y (possibly conditional on covariates) based on the

analogous results to (3.79)-(3.80).

• Thus, if the true missingness mechanism is MAR, the above argument demonstrates that infer-

ences based on the default output will be flawed, as correct assessment of uncertainty in this

case should be based on the sampling distribution that acknowledges the more complex form

of {I(θ0)}−1.

• It is thus recommended in practice that, under the assumption of MAR and correct full data

model, standard errors should be based instead on the inverse of the observed information

matrix , as this will faithfully reflect the true covariance matrix of the sampling distribution.

Unfortunately, many software programs do not allow this option or do not have an option

to output this information matrix.

It has become commonplace in practice (which does not make it correct) to ignore this issue and to

use the usual approximate sampling distribution analogous to (3.80) for inference as if it were valid.

This has the potential to lead to misleading inferences, of course. There have been some empirical

studies that suggest that this practice may not be too terrible in some settings; however, it is critical

that the data analyst appreciate this issue.

3.6 Bayesian inference

So far in this course, we have taken a frequentist perspective on inference in the presence of missing

data; i.e., we have considered likelihood-based inference and large sample theory approximation to

properties of estimators for parameters of interest. It is of course possible to take a Bayesian point of

view.
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In the Bayesian paradigm, parameters like θ are treated as random quantities, and the basis for

inference on θ is the posterior distribution induced by an overall model consisting of the likelihood

for the observed data and a prior distribution for θ. In our context, under MAR, as we have seen, the

likelihood for the observed data (R˜ , Z˜ (R˜)) is

pR˜,Z˜(R˜)(R˜ , Z˜ (R˜); θ,ψ) ∝
N∏

i=1

∏
r

pZ(r )(Z(r )i ; θ)I(Ri =r ), (3.81)

where we ignore the missing data mechanism. Suppose a prior distribution with density pθ(θ) is

assumed for θ. Then, using Bayes rule and (3.81), the posterior density for θ given the observed data

(R˜ , Z˜ (R˜)) is given by

pθ|R˜,Z˜(R˜)
(θ|R˜ , Z˜ (R˜)) =

∏N
i=1
∏

r pZ(r )(Z(r )i ; θ)I(Ri =r )pθ(θ)∫ ∏N
i=1
∏

r pZ(r )(Z(r )i ; θ)I(Ri =r )pθ(θ) dθ
, (3.82)

where the density for the missingness mechanism cancels out from the numerator and denominator

in (3.82).

If it were possible to obtain an expression for the posterior density in (3.82), then estimators for θ can

be obtained as the mean, median, or mode posterior distribution, and Bayesian interval estimates

corresponding to these can be obtained from the appropriate quantiles of this distribution. The chal-

lenge for Bayesian inference is that, except in simple settings, deriving an analytical expression for

the posterior density is not possible owing to the need to carry out what is intractable integration in

the denominator of (3.81).

Luckily, computational advances have made it possible to obtain the posterior distribution through

simulation. Markov chain Monte Carlo (MCMC) techniques can be used to essentially carry out the

integration numerically and result in a sample from the posterior distribution that can then be used to

approximate the posterior distribution. The mean, median, or mode of the sample can be used as an

estimator for θ, and in fact any functional of the posterior distribution be approximated similarly.

Accordingly, another approach to inference on θ would be to adopt a Bayesian framework as above.

Software such as WinBUGS or OpenBUGS can then be used for implementation. In Chapter 4, we

demonstrate in detail such a MCMC formulation.

In the setting of a fully parametric model for the observed data, choosing so-called weak or noninfor-

mative priors can yield inference that has good frequentist properties; e.g., the posterior distribution

and the asymptotic distribution of the MLE are similar.
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