
CHAPTER 2 ST 790, MISSING DATA

2 Naı̈ve Methods

Before discussing methods for taking account of missingness when the missingness pattern can

be assumed to be MAR in the next three chapters, we review some simple methods for handling

missingness. We refer to these as naı̈ve methods because they are mainly ad hoc in nature and not

necessarily based on a principled framework for addressing missing data problems. Nonetheless,

these methods have been widely used in practice.

2.1 Complete or available case analysis

In Chapter 1, we have already examined the consequences of proceeding with analysis based on

only the complete cases, that is, the data from individuals on whom the full data (all data intended

to be collected) are observed; or the available cases, that is, the observed data on all individuals.

COMPLETE CASE ANALYSIS: Historically, before the advent of modern computing, much impor-

tance was attached to having what has often been called in the missing data literature a rectangular

data set. That is, if data on M variables were to be collected on each of N individuals, the intended

data could be represented as a N × M rectangular array, with a row of M values (data record) cor-

responding to each of the N individuals. Implementation of common analysis methods depended on

this rectangular structure, as necessary computations were often simpler and less time-consuming

than those when this structure did not hold. In fact, (finite-sample) properties of some methods that

were straightforward under a rectangular structure could become more challenging to deduce.

Complete case analysis was thus viewed primarily as a way to preserve rectangular structure and

thus simplify computations and understanding of properties. However, putting aside the issues asso-

ciated with failure to appreciate the implications of the missing data mechanism, the loss of informa-

tion could be considerable. For example, as noted by Molenberghs and Kenward (2007), with M = 20

variables, 10% missing data on each, and (somewhat unrealistically) missingness in each variable

happening independently of that in all the others, the probability of observing a complete case is

around 0.13. Even in the more realistic setting where the missingness in variables is correlated, it is

clear that precision and power of desired inferences will be diminished.
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More ominously, as we demonstrated in Chapter 1 in the simple cases of estimation of a single mean

and univariate regression analysis, unless the missingness mechanism is MCAR, the potential for

biased inferences is substantial. It is not hard to imagine that the implications for conducting a

complete case analysis in more complicated settings are similar.

AVAILABLE CASE ANALYSIS: Methods that do not necessarily require the data to be representable

in a rectangular array can also be impacted by simply carrying out the analysis based on the available

or observed data without consideration of the consequences of missingness. In Chapter 1, we

considered the setting of longitudinal data analysis under an assumed model for the population

average of an outcome ascertained over time using GEEs, where interest focuses on inference on

parameters in this assumed model.

By construction, GEEs can handle easily unequal numbers of longitudinal outcomes across individu-

als, so there is no computational challenge, and available software allows for this possibility. However,

if the numbers of outcomes available per individual differ because, among some intended number T

outcomes to be collected over time, some are missing, then care must be taken. We saw that, in

the case of dropout, if the resulting observed data are analyzed as if the differing numbers of ob-

servations were planned and not the result of some missing data mechanism, then inference on

parameters characterizing the population average outcome can be compromised. Thus, even though

the analysis is entirely feasible to conduct, it must be interpreted through the lens of missing data.

BOTTOM LINE: Although complete case and available case approaches to handling missing data

have the appeal of being simple and straightforward to implement, they are not recommended be-

cause they do not take appropriate account of the missingness mechanism. Accordingly, we do not

discuss them further.

2.2 Simple imputation methods

Given the historical context for desirability of having a rectangular data set, an alternative approach

to achieving this based on “filling in” the missing values has been advocated.

IMPUTATION: In particular, the idea is to impute missing values in the data set based on the ob-

served data and then to carry out the analysis that would be undertaken if the full data were all

observed. Several simple imputation approaches have been proposed. Such approaches are ap-

pealing due to their simplicity but, as we demonstrate shortly, can be dangerous.
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Most simple imputation methods can be shown to require that the missingness mechanism be MCAR

for the ensuing inferences to be valid; for example, for consistency of estimators for parameters of

interest to hold. In fact, some methods do not necessarily yield consistent inferences even under

MCAR, as we will see in the next section.

A further drawback is that measures of uncertainty will be distorted. Specifically, the standard ap-

proach is to proceed as if the imputed observations are the actual, intended observations; that is,

adopt standard error estimates, confidence intervals, and so on arising from the usual formulæ, with

no acknowledgement that the imputed data are derived from the observed data. Intuitively, this fails

to account for the uncertainty due to the imputation of missing values.

We now review a few simple imputation approaches and, for one of these, provide a detailed demon-

stration of the implications for inference.

UNCONDITIONAL MEAN IMPUTATION: A natural and simple method for imputing missing values

on a particular continuous variable is to use the average of the observed values on that variable

from the individuals on whom that variable is observed. This is referred to as unconditional mean

imputation to reflect the fact that the imputed value does not use (so condition on) other information

on an individual for whom the variable is missing, as in the method we discuss below.

When a variable is discrete (categorical), an analogous approach is to use the mode of the observed

values on that variable from the individuals on whom that variable is observed.

Although these approaches are straightforward to implement, they seem likely to be problematic as

far as inference is concerned.

REGRESSION IMPUTATION: A seemingly more sophisticated approach is to posit a regression

model for missing values as a function of observed variables and use the predicted values from

a fit of such a model as the imputed data. We examine the properties of this method in a simple

example, which suffices to illustrate the potential drawbacks.

Suppose that the full data are Z = (Y1, Y2), so that K = 2, corresponding to a baseline and follow-up

measurement of some outcome, say. Suppose further that Y1 is always observed, so that R1 = 1

always, and Y2 may be missing. Write Y = (Y1, Y2)T to be the full data vector of outcomes, and let

Ỹ1 = (1, Y1)T . The objective is to estimate

µ2 = E(Y2). (2.1)
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To impute Y2 for those individuals for whom it is missing, suppose we posit a linear regression model

E(Y2|Y1) = β0 + β1Y1 = Ỹ T
1 β, β = (β0,β1)T . (2.2)

For a random sample of N individuals, suppose we fit this model by OLS using the data from the

complete cases for whom R2 = 1. This OLS estimator is given by

β̂ =

{
N∑

i=1

Ri2Ỹi1Ỹ T
i1

}−1 { N∑
i=1

Ri2Ỹi1Yi2

}
. (2.3)

We then impute Y2 for individuals i for whom it is missing (Ri2 = 0) by the predicted values

Ŷi2 = Ỹ T
i1 β̂ = β̂0 + β̂1Yi1.

The regression imputation estimator for µ2 in (2.1) substitutes Ŷi2 for the missing Yi2 for all individ-

uals i in the sample for whom it is missing. We can write this estimator as

µ̂RIMP
2 = N−1

N∑
i=1

{
Ri2Yi2 + (1− Ri2)Ŷi2

}
. (2.4)

When is µ̂RIMP
2 in (2.4) a consistent estimator for µ2?

Consider the properties of µ̂RIMP
2 under one or both of the following conditions:

(i) E(Y2|Y1) = β(0)
0 +β(0)

1 Y1 = Ỹ T
1 β

(0) for some β(0) = (β(0)
0 ,β(0)

1 )T ; that is, the linear regression model

(2.2) used for imputation is correctly specified.

(ii) pr(R2 = 1|Y ) = pr(R2 = 1|Y1) = π2(Y1), say; that is, the missingness mechanism is MAR.

Suppose first that both (i) and (ii) hold. We first deduce the behavior of β̂ in (2.3). By the weak law of

large numbers and under regularity conditions,

β̂
p−→
{

E(R2Ỹ1Ỹ T
1 )
}−1

E(R2Ỹ1Y2). (2.5)

Consider the second component in the right most term in (2.5), which is {E(R2Y2), E(R2Y1Y2)}T :

E(R2Y1Y2) = E{E(R2|Y1, Y2)Y1Y2} = E{E(R2|Y1)Y1Y2} = E{π2(Y1)Y1Y2} by (ii)

= E{π2(Y1)Y1E(Y2|Y1)} = E{π2(Y1)Y1Ỹ T
1 }β(0);

a similar argument holds for the first component. Thus, under (i),

E(R2Ỹ1Y2) = E{π2(Y1)Ỹ1Ỹ T
1 }β(0).
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By a similar argument, the other term in (2.5) satisfies

E(R2Ỹ1Ỹ T
1 ) = E{π2(Y1)Ỹ1Ỹ T

1 }.

It follows that

β̂
p−→
[
E{π2(Y1)Ỹ1Ỹ T

1 }
]−1

E{π2(Y1)Ỹ1Ỹ T
1 }β(0) = β(0). (2.6)

Thus, under (i) and (ii), using manipulations analogous to those above and (2.6),

µ̂RIMP
2 = N−1

N∑
i=1

{
Ri2Yi2 + (1− Ri2)Ỹ T

i1 β̂
}

p−→ E(R2Y2) + E{(1− R2)Ỹ T
1 }β(0) = E{π2(Y1)Y2} + E

[
{1− π2(Y1)}Ỹ T

1 β
(0)
]

= E{π2(Y1)Y2} + E [{1− π2(Y1)}E(Y2|Y1)]

= E{π2(Y1)E(Y2|Y1)} + E [{1− π2(Y1)}E(Y2|Y1)]

= E{E(Y2|Y1)} = E(Y2) = µ2.

That is, under (i) and (ii), corresponding to a correctly specified imputation model and MAR, µ̂RIMP
2

is a consistent estimator for µ2.

What happens if (i) or (ii) does not hold?

Suppose that (ii) holds (MAR) but (i) (correctly specified imputation model) does not. Here,

β̂
p−→ β∗ =

[
E{π2(Y1)Ỹ1Ỹ T

1 }
]−1

E{π2(Y1)Ỹ1E(Y2|Y1)},

so that

µ̂RIMP
2 = N−1

N∑
i=1

{
Ri2Yi2 + (1− Ri2)Ỹ T

i1 β̂
}

p−→ E{π2(Y1)Y2} + E [{1− π2(Y1)}Ỹ T
1 ]β∗

= E(Y2) + E [{1− π2(Y1)}(Ỹ T
1 β
∗ − Y2)] = µ2 + E [{1− π2(Y1)}(Ỹ T

1 β
∗ − Y2)]

which evidently is not equal to µ2 in general.

Likewise, if (i) holds (correctly specified imputation model) but (ii) (MAR) does not, we now have

pr(R2 = 1|Y ) = π2(Y ),

say, depending on both Y1 and Y2, the latter of which may be unobserved. Even if the regression

model (2.2) is correctly specified, the complete case OLS estimator for β (2.3) is not consistent

in general (try it), and it can be shown (try it) that µ̂RIMP
2 does not converge in probability to µ2 in

general.
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MORAL: In this special case, the regression imputation method yields consistent inference if both

the imputation model is correctly specified and the missingness mechanism if MAR. However, in more

complex settings, it is not clear that this need hold.

Critically, even if (i) and (ii) do hold, the usual standard error for a sample mean is not a valid estimator

of the precision of the estimator µ̂RIMP
2 in (2.4). The approach in practice is to use the usual formula as

if the imputed values were actual observations on the outcome, which would clearly lead to incorrect

assessment of uncertainty. (For fun, try deriving a valid standard error estimator.)

OTHER SIMPLE IMPUTATION METHODS: There are still other simple imputation approaches that

have been widely used in practice. For example, so-called hot deck imputation is based on using

observed values from “matching” individuals to “fill in” values for those individuals for whom they are

missing based on some “matching” strategy.

In general, although in our simple regression imputation example a consistent estimator is possible

under MAR and a correct imputation model, most simple imputation methods in fact require that

the missingness mechanism be MCAR for consistent inference. Moreover, the usual formulæ for

estimators of precision, although commonly used in practice, are incorrect because of failure to take

into account the uncertainty due to imputation.

We do not discuss such simple imputation methods further in this course, as principled methods for

handling missing data are available that do not have these drawbacks.

Although simple imputation methods are problematic, the idea of “filling in” missing values in some

principled way has considerable practical appeal. In Chapter 4, we discuss multiple imputation,

which provides a framework in which imputation may be justified and incorporates estimators of

precision that acknowledge that imputation has taken place.

2.3 Last Observation Carried Forward (LOCF)

A variation on the theme of simple imputation is the method called last observation carried forward,

commonly abbreviated LOCF. This approach is most common in settings where a variable is ascer-

tained repeatedly over time and may be missing in a monotone or nonmonotone fashion, although it

is particularly popular when missingness is due to dropout (monotone missingness). Accordingly,

we discuss LOCF in this setting.
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The name of this method describes its implementation: In a longitudinal study in which data are

intended to be collected at T time points, for an individual who drops out at time j , his/her missing

values at times j , ... , T are replaced by his/her last observed value (i.e., the value ascertained at

time j − 1). From this standpoint, LOCF can be viewed as a form of imputation. Figure 2.1 depicts

longitudinal profiles for four hypothetical individuals, where LOCF has been used to “fill in” the missing

values for the three individuals who drop out prior to the final time point at T = 20 weeks.

Figure 2.1: Observed longitudinal profiles for four individuals (solid lines and symbols) with last obser-

vation carried forward (dashed lines and clear symbols) for the three individuals who drop out before

the final time point (20 weeks).
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We discuss LOCF separately from other naı̈ve imputation methods because of the controversy it

has engendered. LOCF is especially common in the analysis of clinical trials in which the primary

outcome is collected longitudinally. Its use is a matter of considerable debate, particularly in phar-

maceutical research and the regulatory context. The books by Molenberghs and Kenward (2007) and

O’Kelly and Rattich (2014) offer discussions of the main issues and cite the substantial literature on

this topic.
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As noted by Molenberghs and Kenward (2007, Chapter 4), there have been attempts to justify LOCF

on scientific grounds.

• In some settings, interest focuses on inference having to do with the last observed outcome

measure; that is, the outcome observed at the time point prior to when an individual might drop

out of a study. Of course, whether or not this corresponds to a meaningful scientific question

can only be assessed in the specific context. If it does, then an argument can be made for an

analysis based on LOCF.

• A common contention is that LOCF represents a conservative analysis in the following sense.

In a clinical trial comparing an experimental treatment to a control, when outcome for individu-

als assigned to the experimental treatment is expected to improve over time, replacing missing

values from the time of dropout forward will make the longitudinal profile for an individual as-

signed to the experimental treatment look worse than it presumably would have if he/she had

continued on the experimental treatment. This would have the effect of “handicapping” the

experimental treatment in the comparison to the control treatment.

Thus, if the experimental treatment nonetheless shows a statistically significant difference from

the control on the basis of a measure like mean outcome at the final observation time T de-

spite this “handicap,” the argument is that this is evidence in support of the superiority of the

experimental treatment.

As exhibited by Molenberghs and Kenward (2007, Chapter 4), this argument does not have a

rigorous basis, and scenarios in which such conservatism does not hold can be constructed.

EXAMPLE: To get a sense of the properties of the LOCF method, we consider the following example.

Suppose that observations on some outcome of interest are planned to be taken at times t1, ... , tT .

The full data are

Z = (Y1, ... , YT ).

Define R = (R1, ... , RT ) as usual. Suppose further that individuals in the study may drop out but that

all individuals are observed at baseline, so R1 = 1 for all. Interest focuses on estimation of mean

outcome at the final (T th) time point; i.e.,

µT = E(YT ).
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The LOCF estimator for µT uses YT when it is observed and otherwise substitutes the last observed

value of outcome in place of YT when it is not. It is convenient to express the estimator using the

dropout notation defined in (1.12), i.e., D = 1 +
∑T

j=1 Rj . Using this notation, it is straightforward to

observe that the LOCF estimator based on a sample of N individuals is then

µ̂LOCF
T = N−1

N∑
i=1

T∑
j=1

I(Di = j + 1)Yij . (2.7)

Here, if dropout is at time j + 1, j < T , the last observed outcome is that at time j , Yj , so it is used in

place of YT in the average in (2.7). Otherwise, if j = T , the observed YT is used.

What is the asymptotic behavior of µ̂LOCF
T ? From (2.7),

µ̂LOCF
T = N−1

N∑
i=1

T∑
j=1

I(Di = j + 1)Yij

= N−1
N∑

i=1

{
YiT +

T∑
j=1

I(Di = j + 1)Yij −
T∑

j=1

I(Di = j + 1)YiT

}

= N−1
N∑

i=1

{
YiT −

T−1∑
j=1

I(Di = j + 1)(YiT − Yij )
}

p−→ E(YT )−
T−1∑
j=1

E{I(D = j + 1)(YT − Yj )}

= E(YT )−
T−1∑
j=1

E{pr(D = j + 1|Z )(YT − Yj )}, (2.8)

where the second equality follows because
∑T

j=1 I(D = j + 1) = 1, and the last equality (2.8) follows by

a conditioning argument (try it).

Define

λj (Z ) = pr(D = j |D ≥ j , Z ), j = 1, ... , T ; λT +1(Z ) = pr(D = T + 1|D ≥ T + 1, Z ) = 1,

πj (Z ) =
j∏

k=1

{1− λk (Z )}, j = 1, ... , T .

Consider the second term in (2.8). It is straightforward to see that

pr(D = j + 1|Z ) = πj (Z )λj+1(Z ).

(Verify this.)
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We can then rewrite (2.8) as

µ̂LOCF
T

p−→ E(YT )−
T−1∑
j=1

E{πj (Z )λj+1(Z )(YT − Yj )}. (2.9)

What does (2.9) imply? Clearly, µ̂LOCF
T is not a consistent estimator for µT = E(YT ) in general.

If there were no dropout, then pr(D = j + 1|Z ) = πj (Z )λj+1(Z ) = 0 for all j = 1, ... , T − 1, and the

estimator is consistent, as is obvious.

Suppose that the missingness mechanism is MCAR, so that pr(D = j + 1|Z ) does not depend on Z

and hence λj (Z ) πj (Z ) are constants λj and πj , say, for each j . In this case, the right hand side of

(2.9) becomes

E(YT )−
T−1∑
j=1

πjλj+1E(YT − Yj ). (2.10)

The expression (2.10) implies the following.

• If in fact E(Yj ) is the same for all j , then the second term in (2.10) is equal to zero, and µ̂LOCF
T is

a consistent estimator for µT .

• If outcomes increase over time, so that E(Yj+1) ≥ E(Yj ) for j = 1, ... , T − 1, then note that the

second term in (2.10) will be nonnegative. In this case, the estimator will converge in probability

to a value less than or equal to µT and will be inconsistent. Thus, in this special case, under

MCAR, if µT is the expected outcome under an experimental treatment, the estimator would

indeed be “conservative” in the sense described earlier.

• Overall, (2.10) shows that, even under MCAR, the LOCF estimator µ̂LOCF
T is not consistent in

general.

Clearly, under MAR or MNAR, from (2.10), the estimator will be inconsistent in general.

MORAL: This example provides a simple illustration of the problems that arise with the LOCF ap-

proach. The literature on LOCF contains many further arguments regarding its supposed advan-

tages, drawbacks, and interpretation. Our position is that LOCF is an ad hoc method that, despite its

simplicity and supposed interpretations, is not based on a principled framework. Accordingly, we do

not discuss it further.
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2.4 Discussion

The takeaway message of this chapter is that ad hoc approaches to accounting for missing data that

are not based on a formal, principled statistical framework are likely to lead to erroneous inferences.

As noted in the previous chapter, it is unlikely that the mechanism governing missingness is MCAR

in many practical situations, particularly those involving human subjects. Thus, development of prin-

cipled approaches to handling missing data is most relevant when the mechanism is MAR or MNAR.

We also remarked informally that progress should be possible when it is reasonable to assume that

the mechanism is MAR – because, under MAR, missingness depends only on data that are observed,

it should be possible to incorporate an “adjustment” for missingness based on these observed data.

(Of course, recall that it is not possible to verify the assumption of MAR based on the observed data,

so it must be justified based on subject matter/scientific grounds.) Methods for handling missing-

ness seem much more problematic under MNAR, where missingness depends on data that are not

observed.

Accordingly, in the next three chapters, we cover in detail three main, principled approaches to in-

ference in the presence of missing data under a MAR mechanism. In the next chapter, we begin by

considering likelihood-based methods; in doing so, we will examine ways to represent the joint dis-

tribution of (R, Z ), the full data and missingness indicators, that provide the formal basis for methods

under both MAR and MNAR.
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