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http://www.lpsm.paris/pageperso/boyer/
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Traumabase: an observational French registry?

> 40000 trauma patients
> 300 heterogeneous features from pre-hospital and in-hospital settings
> 40 trauma centers, 4000 new patients per year

Center  Accident Age Sex Lactate Blood Pres. Shock Platelet

Beaujon fall 54 m NM 180 yes 292000
Pitie gun 26 m NA 131 no 323000
Beaujon moto 63 m 3.9 NR yes 318000
Pitie moto 30 w Imp 107 no 211000

= Explain and Predict hemorrhagic shock, need for neurosurgery and
need for a trauma center given pre-hospital features.

Ex: logistic regression/ random forests + Quantify uncertainty?

1ZafFran, J., Dieuleveut, Romano. Conformal Prediction with Missing Values. ICML 2023.
2yww . traumabase.eu - https://wuw.traumatrix.fr/



Missing values®, #, °

Missing values are everywhere: unanswered questions in a
survey, lost data, damaged plants, machines that fail...

"The best thing to do with missing values is not to have

7

any

Gertrude Mary Cox (1900-1978)

= Still an issue in the "big data” area (data from different sources)

3Little & Rubin (2019). Statistical Analysis with Missing Data, Third Edition, Wiley.
4Van Buuren (2018). Flexible Imputation of Data. Second Edition, Chapman & Hall.
5Schafer (1997). Analysis of Incomplete Multivariate Data, Chapman & Hall.
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" One of the ironies of Big Data is that missing data play an ever more
significant role”®

5Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB.
2022.



Missing data: important bottleneck in statistical practice
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" One of the ironies of Big Data is that missing data play an ever more

significant role”®

Complete case analysis: delete incomplete samples

e Bias: Resulting sample not representative of the target population

e Information loss: Take a matrix with d features where each entry is missing
with probability 1/100, remove a row (of length d) when one entry is missing

d=5 = &~ 95% of rows kept
d=300 = = 5% of rows kept

6Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB.
2022.



Linear models 7/

Linear model

Y = XT8* 4 noise

> Y € R (regression) outcome is always observed
> X € RY contains missing values!
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Linear models

Linear model

Y = XT8* 4 noise

> Y € R (regression) outcome is always observed
> X € RY contains missing values!

Three different tasks: imputation, estimation, prediction.

1. Imputation - Replace missing values to obtain a complete data set,
on which any classical analysis can be performed.

2. Estimation - Provide an estimate of 5* - allows predicting outputs
of complete data.

3. Prediction - Predict Y for a new X with missing entries
Warning: A good estimate of 3* does not lead to a prediction of Y

X = (na, 5,na, —6) X' =77



Solutions to handle missing values in the covariates */*

Abundant literature: Creation of Rmistatic platform? (> 150 packages)

> Imputation: (Single/Multiple) imputation to get a/several complete
data set(s). Ex: (M)ICE

> Estimation: Modify the estimation process to deal with missing values
- Maximum likelihood inference: Expectation Maximization algorithms®
> Prediction: Predict an outcome with missing data in covariates®!.
Solutions: using deterministic (e.g. constant) imputation or Missing
Incorporated in Attributes for trees based methods (grf package)

7Mayer, J. et al. A unified platform for missing values methods and workflows. R journal.
2022.

8Jiang, J. et al. Logistic Regression with Missing Covariates CSDA. 2019. - misaen package

9. et al. Consistency of supervised learning with missing values. Stats papers. 2018-2024.

101 e morvan, J. et al. What's a good imputation to predict with missing values? Neurips2021.


https://rmisstastic.netlify.com/
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Missing values mechanism: Rubin’s taxonomy!! 12w/«

e Random Variables:
> X* € R complete unavailable data, X € R?: observed data with NA
> M < {0,119 missing pattern, or mask, M; = 1 if and only if X; is missing

e Realizations: For a pattern m, o(x, m) = (XJ')J'G{I,W,d}:mj:O the observed
elements of x and while 0°(x, m) = (X)jeq1,...,d}:m=1, the missing elements.

.....

X" =(1,2,3,8,5)

x = (1,NA, 3,8,NA)

m=(0,1,0,0,1)

o(x,m) = (1,3,8), o°(x*,m) = (2,5)

11 Rubin. Inference and missing data. Biometrika. 1976.
12\What Is Meant by " Missing at Random”? Seaman, et al. Statistical Science. 2013.



Missing values mechanism: Rubin’s taxonomy!! 12w/«

e Random Variables:
> X* € R complete unavailable data, X € R?: observed data with NA
> M < {0,119 missing pattern, or mask, M; = 1 if and only if X; is missing

For a pattern m, o(x, m) = (xj)jeq1,....d}: m—o the observed elements of x and

while o¢(x, m) = ()g)je{l,_”,d}:mj:l, the missing elements.

Ex: Simulated missing values according to the 3 mechanisms (Orange points
will be missing) in Systolic Blood Pressure - GCS is always observed
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Missing Completely at Random Missing at Random Missing Not At Random
(MCAR) (MAR) (MNAR)
meM,xe X, Vme M, xe X If not MAR: it is MNAR
P(M=m|x)=P(M=m) P (M = m|x)

=P (M = m|o(x, m))

1 Rubin. Inference and missing data. Biometrika. 1976.
12\What Is Meant by " Missing at Random”? Seaman, et al. Statistical Science. 2013.




Two views to model the joint distribution of (X, M)=/*

> Selection Model®3: p*(M = m,x) = P(M = m | x)p*(x)

Definition: SM-MAR

P(M = m|x) = P(M = m|o(x, m)) for all m e M,x € X.

The proba. of any m occurring only depends on the obs part of x.

> Pattern Mixture Model**: p*(M = m, x) = p*(x | M = m)P(M = m)

Definition: PMM-MAR

p*(oc(xv m) | O(X7 m)v M= m) = p*(oC(Xr m) | o(x, m)).

for all m € M, x € X. The conditional distrib. of missing given obs. in pattern
m is equal to the unconditional one.?

?Molenberghs et al. Every MNAR model has a MAR counterpart with equal fit. JRSSB. 2008

e Proposition: SM-MAR is equivalent to PMM-MAR

B3 Heckman. Sample selection bias as a specification error. Econometrica. 1979
14 ittle. Pattern-mixture models for multivariate incomplete data. JASA. 1993



Testing the missing values mechanism

> Can we observe the missing value mechanism from the sample?

Unfortunately, the general answer is

15 ittle. A Test of Missing Completely at Random for Multivariate Data with Missing Values.
1988

16Michel, Naf, Spohn, Meinshausen. PKLM: a flexible MCAR test using classification,
Psychometrika. 2025

17Berrett, Samworth. Optimal nonparametric testing of missing completely at random and its
connections to compatibility, AoS. 2023



Testing the missing values mechanism

> Can we observe the missing value mechanism from the sample?

Unfortunately, the general answer is

MCAR vs MAR in Gaussian setting

> If we assume MAR is true we can test Hy : MCAR vs Hy : MAR.
> A classical test is the Little test’® that operates under the assumption
of Gaussianity.

15 ittle. A Test of Missing Completely at Random for Multivariate Data with Missing Values.
1988

16Michel, Naf, Spohn, Meinshausen. PKLM: a flexible MCAR test using classification,
Psychometrika. 2025

17Berrett, Samworth. Optimal nonparametric testing of missing completely at random and its
connections to compatibility, AoS. 2023
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Testing the missing values mechanism

> Can we observe the missing value mechanism from the sample?

Unfortunately, the general answer is

MCAR vs MAR in Gaussian setting

> If we assume MAR is true we can test Hy : MCAR vs Hy : MAR.
> A classical test is the Little test’® that operates under the assumption
of Gaussianity.

Nonparametric tests

> One of the very few (if not only) useable nonparametric test is our
PKLMTest!®
> There is also interesting theoretical work!”

15| ittle. A Test of Missing Completely at Random for Multivariate Data with Missing Values.
1988

16Michel, Naf, Spohn, Meinshausen. PKLM: a flexible MCAR test using classification,
Psychometrika. 2025

17Berrett, Samworth. Optimal nonparametric testing of missing completely at random and its
connections to compatibility, AoS. 2023
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Single imputation'®

Generative setting

> (X17X2) ~ N((leaﬂxz)az); n =400

> (fxs 1) = (1,0) and T = ((1,0.3),(0.3,1))
> MCAR missing values on X, only with probability p = 0.6.

Discard incomplete observations and then estimate parameters

Data

3 missing .
* FRlse . ..
®  True .
2 . N .
1 G
LA -
Lo N 10 DR fis, = O fix, = 0.043
. S iegs Peg e o, o - — —
} . ‘!.’..:39-. ?Ss;; :-...'. . Ox, =1 6y, = 0.926
et R p=03 5= 0.368
-2 St ° °
-3

18The code to reproduce the plots is available in Rmistastic


https://rmisstastic.netlify.app/tutorials/josse_bookdown_lecturenotesmissing_2020

Single imputation 1599

Generative setting

> (Xl»X2) ~ N((H‘Xn/lfxz)v Z), n =400
> (fhx s 1x) = (1,0) and ¥ = ((1,0.3),(0.3,1))
> MCAR missing values on X5 only with probability p = 0.6.

Impute by the mean and then estimate parameters

mean imputation

31 imputed

f, =0 [ fix, = 0.043
Oxy = 5y, = 0.586
p=03 5= 0.227

-2 -1 [ 1 2 3 4

Mean imputation deforms joint and marginal distributions
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Objective: to impute while preserving distribution

Assuming a bivariate gaussian distribution xjp = 8o + Bixi1 + €, € ~ N (0, 0?)

> Regression imputation: Estimate 8 (here with complete data) and impute
Xi» = Po + P1xi1 = variance underestimated and correlation overestimated

> Stochastic reg. imputation: Estimate 8 and o - impute from the predictive
Rio ~ N (Bo + /3’1x,-1,62) = preserve distributions

regression imputation stochastic regression imputation

mean imputation

37 imputed

37 imputed
o Rlse

37 imputed
o Rlse
o Tue

o Rlse

fxo = 0.043 0.038 0.037
oy, =1 0.926 0.647 0.909
p=03 0.368 0.539 0.275




Impute while preserving distribution. Multivariate case”

> Assuming a joint distribution
o Gaussian model x; ~ N (1, X)
o Low rank : Xpxd = finxd + € €j 1'3./\/'(0, 02) with p of low rank
= Different regularization depending on noise regime 8

= Count data!®, ordinal data, categorical data, blocks/multilevel data
o Optimal transport 2°, deep generative models: GAIN?!, MIWAE %, etc. 2
24

> lterating conditional models (joint distribution implicitly defined)
© with parametric regression (M)ICE: (Multiple) Imput. by Chained Equations 2°

o iterative imputation of each variable by random forests 26

18) & Wager. Stable autoencoding for regularized low-rank matrix estimation. JMLR. 2016.
lgRobin, Klopp, J., Moulines, Tibshirani. Main effects & interac. in mixed data. JASA. 2019.
20Muzelec, Cuturi, Boyer, J. Missing Data Imputation using Optimal Transport. /CML. 2020.
2Lyoon et al. GAIN: Missing data imputation using generative adversarial nets. /[CML. 2018.
22Mattei & Frellsen. Miwae: Deep generative model & imput. of inc. data. /ICML. 2018.
23Deng et al. Extended missing data imput. via gans. DMKD. 2022.

24Fang, Bao. Fragmgan: gan for fragmentary data imputation. STRF 2023.

25yan Buuren, S. Flexible Imputation of Missing Data. Chapman & Hall/CRC Press. 2018.
26$tekhoven, Biihimann. MissForest—non-parametric imputation for mixed data. Bioinfo. 2012.
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Init.

Age | Inc. | Gen.
34 NA F
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NA 14 M
NA NA F
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Imputation by Chained Equations (ICE)

Init.

1st
Age

step

Impute | via mean/mode

Age | Inc. | Gen. Age | Inc. | Gen.
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NA 14 M 26 14 M
NA NA F 26 13 F

Set values of Age

originally missing

as unknown
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18 12 F
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? 13 F
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Impute via mean/mode

Age | Inc. | Gen. Age | Inc. | Gen.
34 NA F 34 13 F
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NA 14 M 26 14 M
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Set values of Age
originally missing

as unknown
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to predict Age
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Imputation by Chained Equations (ICE)

Impute via mean/mode

Age | Inc. | Gen. Age | Inc. | Gen.
34 NA F 34 13 F
Init. 18 12 NA 18 12 [F
NA 14 M 26 14 M
NA NA F 26 13 F
Set values of Age Fit a predictive model on Use the fitted model
originally missing complete observation to impute ?
as unknown to predict Age

Age | Inc. | G Age | Inc. | G

en. en. Age | Inc. | Gen.

34 13 F 34 13 F 34 13 F

15t step 18 12 F 18 12 F 18 12 F
Age ? 14 M ? 14 M 50 14 M
? 13 F ? 13 F 34 13 F
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Impute via mean/mode

Age | Inc. | Gen. Age | Inc. | Gen.
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NA 14 M 26 14 M
NA NA F 26 13 F

Set values of Inc.

originally missing

as unknown

Fit a predictive model on

complete observation

to predict | Inc.

Use the fitted model
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Init.

'Gen.’

step

Impute via mean/mode

Age | Inc. | Gen. Age | Inc. | Gen.
34 NA F 34 13 F
18 12 NA 18 12 F
NA 14 M 26 14 M
NA NA F 26 13 F

Set values of Gen.

originally missing

as unknown
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complete observation
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Imputation by Chained Equations (ICE)

Impute via mean/mode

Age | Inc. | Gen. Age | Inc. | Gen.
34 NA F 34 13 F
Init. 18 12 NA 18 12 [F
NA 14 M 26 14 M
NA NA F 26 13 F
Set values of Gen. Fit a predictive model on Use the fitted model
originally missing complete observation to impute ?
as unknown to predict = Gen.
Age | Inc. | Gen. Age | Inc. | Gen. Age | Inc. | Gen.
34 12 F 34 12 F 34 12 F
'Gen.’ 18 12 ? 18 12 ? 18 12 F
step 50 14 M 50 14 M 50 14 M
34 12 F 34 12 F 34 12 F




Imputation by Chained Equations (ICE)

Init

'Age’ step

"Inc.

'Gen.’

step

step
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34 12 F 34 12 [F 34 12 F
18 12 ? 18 12 ? 18 12 F
50 14 M 50 14 M 50 14 M
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> Initialization
> Number of cycles
> Ordering of variables: same order, random order...



Hyperparameters - R implementation

Initialization

Number of cycles

Ordering of variables: same order, random order...
Predictive models

vV vV vV VvV

)2;28

o Predictive mean matching (numeric data
o Logistic regression imputation (binary data
¢ Multinomial regression imputation (unordered categorical data)
o Proportional odds model (ordered categorical data) 2°

2Thttps://stefvanbuuren.name/fimd/sec—pmm.html

28nttps://www.rdocumentation.org/packages/mice/versions/3.17.0/topics/
mice.impute.logreg

nttps://online.stat.psu.edu/stat504/lesson/8/8.4


https://stefvanbuuren.name/fimd/sec-pmm.html
https://www.rdocumentation.org/packages/mice/versions/3.17.0/topics/mice.impute.logreg
https://www.rdocumentation.org/packages/mice/versions/3.17.0/topics/mice.impute.logreg
https://online.stat.psu.edu/stat504/lesson/8/8.4
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Hyperparameters - R implementation

Initialization

Number of cycles

Ordering of variables: same order, random order...
Predictive models

vV vV vV VvV

o Predictive mean matching (numeric data)

o Logistic regression imputation (binary data)

© Multinomial regression imputation (unordered categorical data)
© Proportional odds model (ordered categorical data)

Logistic regression imputation - Bayesian logistic regression

> Fit a logistic model on the data

> Construct ﬂ and an estimation of its covariance matrix 3.
> Draw § ~ N (3, %).

> Compute the predicted score as o(X T 3).

> Impute by drawing a Bernoulli with parameter a(XTB).




Hyperparameters - R implementation

vV vV vV VvV

Predictive mean matching

>
>
>
>
>
>
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Initialization

Number of cycles

Ordering of variables: same order, random order...
Predictive models

o Predictive mean matching (numeric data)

o Logistic regression imputation (binary data)

© Multinomial regression imputation (unordered categorical data)
© Proportional odds model (ordered categorical data)

Fit a linear model on the data

Construct ﬁ and an estimation of its covariance matrix 3.

Draw 3 ~ N(3,%).

Compute the predicted scores as X T 3.

Find the k = 5 observations for which X;™ 3 is the closest to XT3
Impute by drawing uniformly at random one observations among the k
selected observations. )
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Hyperparameters - R implementation

Initialization

Number of cycles

Ordering of variables: same order, random order...
Predictive models

vV vV vV VvV

o Predictive mean matching (numeric data)

o Logistic regression imputation (binary data)

© Multinomial regression imputation (unordered categorical data)
© Proportional odds model (ordered categorical data)

Random forests - Mice.RF

> Fit a random forest on the data

> For a given 'missing’ observation, put it down each tree and collect all
observations in all leaves

> Impute by drawing at random an observation among the previous set
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Hyperparameters - R implementation

Initialization

Number of cycles

Ordering of variables: same order, random order...
Predictive models

vV vV vV VvV

o Predictive mean matching (numeric data)

o Logistic regression imputation (binary data)

© Multinomial regression imputation (unordered categorical data)
© Proportional odds model (ordered categorical data)

Random forests - MissForest

> Fit a random forest on the data
> Impute by predicting the value output by the RF
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Single imputation

methods

stochastic regression imputation

22 /99

mean imputation regression imputation
39 imputed 39 imputed . 39 imputed .
Fals Fals Fals
Tue Tue T
2
1
o
-
-2 -2 -2
2 4 3 1 3 H 2 A 13 1 2 2 A 3 1 2 a
X X

-0.007

0.622

0.194




Single imputation methods b
mean imputation regression imputation stochastic regression imputation
31 imputed 31 imputed . 31 imputed .
:
,
:
.
x x

-0.007 ~0.004 -0.002
0.622 0.675 0.986
p=03 0.194 0.440 0.307

How to build confidence intervals for p,?

99



Confidence interval for a mean

Let Y =(Y1,..., Y,s) bei.id. independent Gaussian N (uy,07).
> Unknown variance: .
Byt (1)
p,

> Unknown variance:
V(B )~ - )
oy
> Cl for p, at level o [ﬁy — %qtl,a/Z(n 1), fy+ %qtl,a/Z(n - 1)]

Simulation - Computing coverage

Generate bivariate Gaussian data (i, = 0,0, =1,p = 0.6)
Put MCAR missing values on y and impute missing entries
Compute the confidence interval of p,

Count if the true value i1, = 0 is in the confidence interval
Repeat the steps 1-4, 10000 times

Ok wd e

Code available on Rmistatic.


https://rmisstastic.netlify.app/tutorials/josse_bookdown_lecturenotesmissing_2020

Single imputation methods: Danger!

mean imputation

regression imputation

stochastic regression imputation

24

,J

oo ....‘..«j‘..ha,.t.-.-.. .
2% ted

-0.007

0.622

0.194

Cluy95%

99



Single imputation methods: Danger! 24/ 8

mean imputation regression imputation stochastic regression imputation

py =0 -0.007 -0.004 -0.002
o, =1 0.622 0.675 0.986
p=03 0.194 0.440 0.307
Cl11,95% 55.0 60.3 73.3




Single imputation methods: Danger!
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mean imputation regression imputation stochastic regression imputation
3 imputed 31 imputed 31 imputed
fals o fais false
True E True .
. . 2a “ e
.. SR
1 1 L.
<
L aate °
A
R T
o tmgegn S
o . £ bl
TN
S
2 2 -2 o
S S S S 2 P S

p, =0 [-0.007 ~0.004 -0.002
oy =1 0.622 0.675 0.986
p=03 | 0194 0.440 0.307
Clpy95% | 55.0 60.3 733

= Standard errors G, based on the imputed data set are underestimated

The idea of imputation is both seductive and dangerous (Dempster and

Rubin, 1983)
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Asymptotic theory

Oy ~

Asymptotic confidence interval for p,: [p,y — 2aj2 iy —zl_a/2%]

Consider MCAR values and

> Impute missing values on via (stochastic) linear regression
> fi, is the average of y computed on the imputed data set

Asymptotic variance (Little & Rubin, 2019. p158)

AD
o 4 21— Npyl
Var(fiy, — py] =~ nfy” (1 - P2Tu> )

u

where G, is estimated on the complete observations only and ng, the
number of complete observations.

> If there are few missing data (ngy ~ (n)), then Var[fi, — u,] ~ 62/n,
the ACI has the correct asymptotic coverage (ldem if p = 1).

> But, in general, coverage of single imputation is too low: need to
take into account the uncertainty associated to the predictions.



Multiple imputation: correct standard errors

1) Generate M plausible values for each missing value

X X2 X3 M X X2 X3 Y X X X3 Y
3 20 10 s -7 20 10 s 7 20 10 s
-6 45 6 s -6 45 9 s -6 45 12 s
0 4 30 nos 0 12 30 nos 0 -5 30 nos
-4 32 35 s 13 32 35 s 2 32 35 s
1 63 40 s 1 63 40 s 1 63 40 s
-2 15 12 no s -2 10 12 no s -2 20 12 no s

2) Perform the analysis on each imputed data set: Bm,\//-a\r (Bm)

3) Combine the results (Rubin’s rules)?’:

1 M
b=+ mgl B
1 M - 1 M 5
_ 3 1 3 a3
T = MZVar(Bm) +(1+W)M_lz<ﬂm76)
m=1 m=1
Within-imputation variance Between-imputation variance

27see Chapter 14 of Semiparametric Theory and Missing Data. A.A. Tsiatis. 2006.
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Multiple imputation: bivariate case?® 21 /99

MI based on stochastic regression

1. Generate M imputed data sets: for m=1,..., M,
> draw §; from N (x;3,6?)
2. Performe the analysis on each imputed data set
3. Compute the variance (= within + between imputation variance)

28Code available on Rmistatic.


https://rmisstastic.netlify.app/tutorials/josse_bookdown_lecturenotesmissing_2020

Multiple imputation: bivariate case?® /%

MI based on stochastic regression

1. Generate M imputed data sets: for m=1,..., M,
> draw §; from N (x;3,6?)
2. Performe the analysis on each imputed data set
3. Compute the variance (= within + between imputation variance)

M=1 M =50

/i, =0 -0.002 0.02
oy =1 0.986 0.936
p=03 0.307 0.314

Cl11,95% 733 82.0

28Code available on Rmistatic.


https://rmisstastic.netlify.app/tutorials/josse_bookdown_lecturenotesmissing_2020

Multiple imputation: bivariate case?® /%

MI based on stochastic regression

1. Generate M imputed data sets: for m=1,...., M,
> draw §; from N (x;3,6?)
2. Performe the analysis on each imputed data set
3. Compute the variance (= within + between imputation variance)

M=1 M =50

[y =0 -0.002 20.02
oy =1 0.986 0.936
p=03 0.307 0.314

Cly1,95% 73.3 82.0

> Variability of the parameters is missing: "improper”’ imputation
> Prediction variance = estimation variance plus noise

28Code available on Rmistatic.


https://rmisstastic.netlify.app/tutorials/josse_bookdown_lecturenotesmissing_2020

Multiple imputation: bivariate case

28

27
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MI based on stochastic regression

1.

Generate M imputed data sets: for m=1,..., M,

> Generate Bl, ...,BM by bootstrap or via posterior distribution
(Data Augmentation, Tanner & Wong, 1987))

> Impute missing values y/ by drawing N'(x;3™, (6%)™)

Performe the analysis on each imputed data set

Compute the variance (= within + between imputation variance)

M=1 M =50 M = 50 with boot.

py =0 -0.002 -0.02 -0.006
o, =1 0.986 0.936 1.036
p=03 0.307 0.314 0.295
Cl11,95% 73.3 82.0 98.0

28Code available on Rmistatic.


https://rmisstastic.netlify.app/tutorials/josse_bookdown_lecturenotesmissing_2020

Multiple imputation?? 25

= Aim: provide an estimation of all parameters with their estimated
variance.

Parametric Multiple imputation

1. Generating M imputed data sets, taking into account:

> structural noise (e.g. o2 via stochastic regression)
> parameter variance (e.g. via bootstrapping)

2. Performing the analysis on each imputed data set?,
3. Compute the variance (= within + between imputation variance)

Bm s B T = S Var (Bn) + 1+ ) 7 2 (B = B)

?The analysis model may be "in agreement” with the imputation model: congeniality.

29 jttle & Rubin. 2019. Statistical Analysis with Missing Data, 3rd Edition. Wiley



Multiple imputation?? 25

=- Aim: provide an estimation of all parameters with their estimated
variance.

NonParametric Multiple imputation

1. Generating M imputed data sets, taking into account:
> structural noise (e.g. o2 via stochastic regression)
> parameter variance (e.g. via bootstrapping)

2. Performing the analysis on each imputed data set?,

3. Aggregate the result of each analysis (e.g. taking the mean of
predicted output values)

?The analysis model may be "in agreement” with the imputation model: congeniality.

29 jttle & Rubin. 2019. Statistical Analysis with Missing Data, 3rd Edition. Wiley
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Multiple Imputation with joint modeling

= Hypothesis x; ~ N (i, X)

Expectation Maximization Bootstrap

1. Bootstrap rows: X!, ..., XM
2. EM algorithm: (it Zl) (e S

s . om m
3. ImPUtatlon' Xi miss drawn from A/ p’miss|obs’ zmiss|obs)

Easy to parallelized. Implemented in Amelia (website)

‘ﬂ

James Honaker Gary King Matt Blackwell

Amelia Earhart


http://gking.harvard.edu/amelia

Multiple imputation by chained equations or FCS32 /=

e Impute variables 1 by 1 using all other variables as inputs (round-robin)
e One model/variable: flexible for different types of variables
e Cycle through variables: iteratively refining imputations

1. Initial imputation: mean imputation

2. For a variable j
e (B_j,6_;) drawn from a Bootstrap: (ﬂl_J,& ), ,(B_J,6 )
e Impute X/ via stochastic regression A/ <(x,-7_j) iy A"’J>

3. Cycling through variables

= With continuous variables & regression/variable: gibbs A (y, ¥) 3¢ 31

“There is no clear-cut method for determining whether MICE has converged’
Implemented in R package mice & lterativelmputer from scikitlearn (de-
fault iterative ridge regression)

Stef van Buuren

30 Monte Carlo statistical methods (Robert, Casella, 2004) (p344),
31 The EM algorithm and extensions (McLachlan, et al. 1998) (p243)
32 yan Buuren. 2018. Flexible Imputation of Missing Data. Second Edition. CRC Press
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Joint versus Conditional modeling

Conditional modeling takes the lead?

> Flexible: one model/variable. Easy to deal with interactions and
variables of different nature (binary, ordinal, categorical...)

> Many statistical models are conditional models

> Tailor to your data - Super powerful in practice

= Drawbacks: one model/variable. Computational costly?

?lmprovement on mice pmm for large sample size, see mice github repo - still costly for large d
v

What to do with high correlation or when n < p

> JM shrinks the covariance ¥ + kI (selection of k?)
> CM: ridge regression or predictors selection /variable

| A\

Challenges with multiple imputation

> MI in high dimension? Theory with small n, large p?
> Aggregating lasso regressions? clustering?



https://github.com/amices/mice/issues/236

Summary =/

1. Missing values mechanism
2. Single Imputation

3. Multiple Imputation

4. Imputation quality

5. Supervised Learning with Missing values
Decision trees as PbP predictors
Impute-then-regress procedures with consistent predictors

6. Linear models
Linear regression: A pattern-by-pattern approach
Linear regression: Impute-then-regress procedures via zero-imputation
Classification with missing values

7. Conclusion
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How to evaluate imputation quality?

> Aim: imputed data must resemble complete data.

Original data set

Age | Inc. | Gen.
34 NA F
18 12 NA
NA | 14 M
NA NA F
34 NA M
22 28 F
29 10 NA
34 NA F
80 NA NA
68 15 F




How to evaluate imputation quality?

> Aim: imputed data must resemble complete data.

Original data set Imputed data set
Age | Inc. | Gen. Age | Inc. | Gen.
34 NA F 34 13 F
18 12 NA 18 12 F
NA | 14 M 30 | 14 M
NA | NA F 30 13 F
34 NA M 34 13 M
22 28 F 22 28 F
29 10 NA 29 10 F
34 NA F 34 13 F
80 NA NA 80 13 F
68 15 F 68 15 F




How to evaluate imputation quality?

> Aim: imputed data must resemble complete data.

Original data set Imputed data set
Age | Inc. | Gen. Age | Inc. | Gen.
34 NA F 34 13 F
18 12 NA 18 12 F
NA | 14 M 30 | 14 M
NA | NA F 30 13 F
34 NA M 34 13 M
22 28 F 22 28 F
29 10 NA 29 10 F
34 NA F 34 13 F
80 NA NA 80 13 F
68 15 F 68 15 F

What is the quality of data imputation?
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How to evaluate imputation quality?

> Aim: imputed data must resemble complete data.

Original data set

Age | Inc. | Gen.
34 NA F
18 12 NA
NA | 14 M
NA NA F
34 NA M
22 28 F
29 10 NA
34 NA F
80 NA NA
68 15 F
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How to evaluate imputation quality?

> Aim: imputed data must resemble complete data.

Original data set

Age | Inc. | Gen.
34 NA F
18 12 NA
NA | 14 M
NA NA F
34 NA M
22 28 F
29 10 NA
34 NA F
80 NA NA
68 15 F




How to evaluate imputation quality?

> Aim: imputed data must resemble complete data.

Original data set Additional missing values
Age | Inc. | Gen. Age | Inc. | Gen.
34 NA F 34 NA F
18 12 NA NA | NA NA
NA 14 M NA 14 NA
NA NA F NA NA F
34 NA M 34 NA M
22 28 F 22 NA F
29 10 NA NA 10 NA
34 NA F 34 NA F
80 NA NA 80 NA NA
68 15 F 68 NA NA




How to evaluate imputation quality?

> Aim: imputed data must resemble complete data.

Original data set Additional missing values Imputed missing values
Age | Inc. | Gen. Age | Inc. | Gen. Age | Inc. | Gen.
34 NA F 34 NA F 34 12 F
18 12 NA NA | NA NA 46 12 F
NA | 14 M NA | 14 NA 46 | 14 F
NA NA F NA NA F 46 12 F
34 NA M 34 NA M 34 12 M
22 28 F 22 NA F 22 12 F
29 10 NA NA | 10 NA 46 | 10 F
34 NA F 34 NA F 34 12 F
80 NA NA 80 NA NA 80 12 F
68 15 F 68 NA NA 68 12 F




How to evaluate imputation quality?

> Aim: imputed data must resemble complete data.

Original data set Additional missing values Imputed missing values
Age | Inc. | Gen. Age | Inc. | Gen. Age | Inc. | Gen.
34 NA F 34 NA F 34 12 F
18 12 NA NA | NA NA 46 12 F
NA | 14 M NA | 14 NA 46 | 14 F
NA NA F NA NA F 46 12 F
34 NA M 34 NA M 34 12 M
22 28 F 22 NA F 22 12 F
29 10 NA NA | 10 NA 46 | 10 F
34 NA F 34 NA F 34 12 F
80 NA NA 80 NA NA 80 12 F
68 15 F 68 NA NA 68 12 F

Compared initial vs imputed values via predictive metrics (MSE, MAE...)



Measures related to imputation quality

34 /99

Pointwise predictive measure such as MSE rank highest imputation close
to the conditional expectation

> Favor imputation with small variability

Imputation is a distributional task so one should use distributional
measures333* to assess its quality.

true data

mean sample mico-cart
XY £ 0’0y & % oog - %
g ! Ge 7T he s 22 e
° A ° o LN 2 [y
F o ahag, i o B 8% o | o oo %
£ e s ARG Wiy 5
8 3 S &3 o, °
v % é s et O 7 e o | |g %@ R .
§ @ 3 8 ol g0 9 8o, 8, £ &
. g ® o ol |o w0 .0 [0 0 % Fo o @ ® § o
.4 R oo S8 a0 %0 s & -
8 € . 4 055 e &
; &g g B el I
& @,z ¢ i Y X P %o et W
@ Y ° o T o o & 8o o
s 1 S0 o % ®
g, & o o o o @ o %
o o 5o o8 ° @
Sdeis § whigd

33Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013
34Gneiting, Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, JASA, 2007
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Measures related to imputation quality

Pointwise predictive measure such as MSE rank highest imputation close
to the conditional expectation

> Favor imputation with small variability

Imputation is a distributional task so one should use distributional
measures333* to assess its quality.

true data mean sample mice-cart

) oo, 8%

g.,ﬁ - i g0
° 8
@o o

aea‘ﬂ"“"% * i e, S,

o o o Q:o 8
{3 ; 3 -
° g E °° el Jo w0 ® . of @ © 3
T 4 3« E & 8 5
8 % L) L3 & &
° PR AN s 9 &o

$ ae,y O i L Y

‘.‘3 Y o ] uz 8o o

&g, B o oo
S8 ° 8 o8 é.im

Imputation method | Mean | Sample | Mice-CART
Renormalized RMSE 0 -0.18 -0.22

33Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013
34Gneiting, Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, JASA, 2007
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Distributional measures

> Energy score (distribution vs a point)
1
es(H,x) = SEx xnnlIX = X'[lre] = Ex~nllIX = Xl|ge]

> The energy score can be used to score distributional
prediction/imputation

Controlled simulation setting

> Generate complete data

> Mask some data according to MCAR/MAR/MNAR mechanism

> Learn a distributional imputation method H

> For any x € R9, sample imputed values from H to estimate es(H, x)
> Average over X ~ P* (complete data distribution) to estimate

S(H,P*) :=Ey.p-[es(H, Y)]

v

The question of how to evaluate imputation methods becomes much
harder when the true underlying values are not available.
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A new procedure

> Consider a distribution k on the subsets of {1,...,d}

> For each A C {1,...,d}, we let P} be the marginal distribution of M
on A. We denote My ~ Pf\”.

> We also let Ha|Ma = ma, i.e. the distribution of an imputation H,
given the missingness pattern my on the projection A.
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A new procedure

> Consider a distribution k on the subsets of {1,...,d}

> For each A C {1,...,d}, we let P} be the marginal distribution of M
on A. We denote My ~ PY.

> We also let Ha|Ma = ma, i.e. the distribution of an imputation H,
given the missingness pattern my on the projection A.

Imputation score of imputation H

N pa(XalMa =0
SNA(Ha P) = EANN,MANPA",XANHMA [log <%)} .
A
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A new procedure

Group observations into J groups according to their missing data pattern
My, ..., M,.

Procedure
For each missing pattern m among My, ..., M,
1. Choose num.proj projections on {1,...,d} such that each projection

contains at least one observed and one missing component.

2. Obtain the imputed data from pattern m, denoted by X;. Split them into
two halves )A(,-O and )A(,-l

3.  For each projection Ax (k =1,...,num.proj),
a) Get the complete data X" from the projected data Xa,
b) Get the projected imputed data )%,?Ak
c) Fit a forest with num.trees.per.proj to discriminate X;*" from

)A(,-?Ak (ensuring balanced classes).

4. Aggregate all forests and let ga(x) be the probability output by the forest
at x.

5. Compute the individual scores log ga(x) for x € X

6. Average all scores across all observations, missing patterns and imputed
data sets (multiple imputation) to get the final imputation score.




Measures related to imputation quality

Imputation is a distributional task so one should use distributional

measures3°30 to assess its quality.

true data mean

° ) % 0op « 6®
g { G 8l i e
® e ° ° °0o 2 ]
&l g8 o | e T
& %qum‘::zg % g ey BEIES L n&w, -, -
- % et T e o | [T w L
{9 %% IR R 5 ¢
° e R I e e R 93 R o q o ) §
LR ! R S R T
. 8 g a &0 %0 e S G e e
"&:oﬁ . ; °=oz So, 008 0 ty é,;m.b
Imputation method Mean | Sample | Mice-CART
Renormalized RMSE 0 -0.18 -0.22
Renormalized Energy score

35Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013

36Gneiting, Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, JASA, 2007

37

99



Measures related to imputation quality

Imputation is a distributional task so one should use distributional
measures3°30 to assess its quality.

true data

gt i @ity g :% w8
o @ ° B e s 8
S s, % R A Py
& %qum‘::zg % g ey BEIES L n&w, -, -
- % et T e o | [T w L
{9 %% IR R 5 ¢
LIESPORE 0 ) [ - Sl HEE S
: 2 e i A LI N A =
8 % ¥ e © a0 %% ¢ & .
. 8 g a &0 %0 e S G e e
5 el i P | 3 e X
"&:oﬁ . ; °=oz So, 008 0 ty é,;m.b
Imputation method Mean | Sample | Mice-CART
Renormalized RMSE 0 -0.18 -0.22
Renormalized Energy score | -22.4 -1.39 0

35Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013

36Gneiting, Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, JASA, 2007
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Major characteristics of imputations

Imputation should

(1) be a distributional regression method,
(2) be able to capture nonlinearities in the data,
(3) be able to deal with distributional shifts in the observed variables,

> Conditional and marginal distribution shifts can occur for different patterns
under MAR
> Conditional shifts are handled with FCS

Method 1 @ @
missForest (Stekhoven & Biihlmann, 2011)

mice-cart (Burgette & Reiter, 2010)
mice-RF (Doove et al., 2014)
mice-DRF (N&f et al., 2024)

NIENIENIEN

SNENIENIEN

mice-norm.nob (Gaussian)

mice-norm.predict (Regression)




MAR with shift in cond. distribution between pattertis”

e Example: two patterns m; = (0,0) and my = (1,0), with
Y =((2,1),(1,1))) and a shift:

X ‘ M:m2NN((575)’Z))'



MAR with shift in cond. distribution between patterfis”

e Example: two patterns m; = (0,0) and my = (1,0), with
Y =((2,1),(1,1))) and a shift:

X | M=m; ~ N((0,0),z))
X | M= m ~N((55),5)).

e A special case of MAR: conditional distributions are the same across
patterns:

X1|X2, M = my = X1|X2, M = my.

Definition (Conditional indep. MAR - CIMAR)

Forall m,m' € M,x € X,

p*(OC(X, m) | O(X7 m)7 M = m/) = p*(oc(x, m) | O(X7 m))




MAR with shift in cond. distribution between patterfis”

e Example: two patterns m; = (0,0) and my = (1,0), with
Y =((2,1),(1,1))) and a shift:

X | M=m; ~ N((0,0),z))
X | M= m ~N((55),5)).

e A special case of MAR: conditional distributions are the same across
patterns:

X1|X2, M = my = X1|X2, M = my.

Definition (Conditional indep. MAR - CIMAR)

Forall m,m' € M,x € X,

p*(0(x, m) | o(x,m),M = m") = p*(o°(x, m) | o(x, m)).

Beware! Even in this case, the joint distribution varies across pattern,
since the marginal distribution of X changes



Forests generalize poorly outside of the training set “/*

e Example: two patterns my = (0,0) and m» = (1,0), with X = ((2,1),(1,1))
and a shift X | M = m; ~ N((0,0),X)), X | M =m; ~ N((5,5),X)).

Truth Gaussian

00 04 08 1.2
Ll
00 04 08 1.2
L1

00 04 08 12
IR
—]

]
00 04 08 12
[

Figure: True distribution against a draw from different imputation methods.

DRF, a distributional method, fails to deal with covariate shift

> Imputation should be centered around 5.



MAR with shifts in cond. distribution between patte*n$

Consider X € R? with three different missing patterns:

my = (0,0,0), m;=(1,0,0) and m3=(1,1,0).

MCAR: No change allowed.
Forall m,m' e M,x € X, p*(x) = p*(x | M =m) = p*(x | M =)

CIMAR: No conditional changes allowed

P (x1,% | x3, M = m1) = p*(x1, % | x3, M = mp) = p*(x1,% | x3, M = m3) =
P (x1, % | x3)

Distrib. of X1, X, | X3 is not allowed to change from one pattern to
another, though the marginal distrib. of X3 can change.

| A

PMM-MAR: many changes allowed

p*(x, %2 | x3, M = m3) = p*(x1,% | x3)
Both distrib. of observed variables and conditional ones can change from
pattern to pattern.
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Relationships between the M(N)AR conditions®’

[CIMNARI

E; le 3
orollary xampie

PMM-MARl > > SM-MARI

E} Example []
EMAR R
Example
CIMAR] —><EMKEI
Corollary [7] @
[PMM-MCAR] Y_ > SM-MCAR.

37Naf, Scornet J.. (2024). What is a good imputation under MAR. Submitted.



Benchmarking imputation methods

> 65 methods (R & Python)
> 14 datasets: 100-50000 observations and 3-400 features
> 10-30 % NA MCAR, MAR, Standardized energy distance

SR
mcscan g

> Mice-cart®, areglmpute (close to mice—|—sp|ines—|—pmm)3g, Hyperimpute (mice
+ model selection RF, XGBoost, Logistic Reg., etc)40, Mice mixed*!

38Buuren & Groothuis-O. (2011). Multivariate imputation by chained equations in R. JSS.
39Harrell & Dupont (2018). Hmisc: Harrell miscellaneous. R package. Stat. Comput.

40 Jarrett et al. (2022). Hyperimpute: Gen. iter. imput. with automatic model selection. /CML.
41Varga (2020). missCompare: Intuitive Missing Data Imputation. R package. Stat. Comput.



Take home message on inference & imputation

> Different missing data scenario designed for likelihood inference (e.g.
EM algorithm) but that can be very complex (distribution shift in
MAR).

> Use single imputation only for point estimates

> In general, look for an imputation that preserve the joint distribution of
the data

> Compare imputation methods with distributional metrics like energy
distance

> Multiple imputation aims at estimating the parameters and their
variability taking into account the uncertainty of the missing values

> Use Multiple imputation to get confidence intervals

> mice-DRF promising (code available) - mice-Engression*?

42Shen & Meinshausen (2024). Engression: extrapolation through the lens of distributional
regression. JRSS B.
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5. Supervised Learning with Missing values
Decision trees as PbP predictors
Impute-then-regress procedures with consistent predictors



Formalizing the problem

> Assumption - The response Y is a function of the (unavailable)
plus some noise:

Y=F(X)+e, XeR YeR

> Optimization problem:

min  R(F) ::E{(Y—f( ))2]

£( )d—R
> A is a minimizer of the risk. It is given by:
F*(X) = E[Y Xeoosqray, M] = E [£(X) Xobs(un), M]
where M € {0,1}¢ is the missingness indicator.

> The R* is the risk of the Bayes predictor: R* = R(f*).

> A function f achieves the Bayes rate, i.e, R(f) = R*.

46
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Supervised learning with missing values

4.6 9.1
79| - 2.1
Y= 8.3 X = NA

4.6 NA

NA 1 9.1
NA 3 2.1
9.6 2 X = 6.7
55 6 4.2

8.5
35
9.6
55

AN W

== OO

X =X®(1—M)+NA® M. New feature space is R = (R U {NA}).

OO -

7/ 99

O O O o
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Supervised learning with missing values

X =X®(1—M)+NAG M. New feature space is RY = (R U {NA})?.

4.6 91 NA 1 9.1 85 1 010
791 ¢ 21 NA 3 21 35 3 010
Y= 8.3 X = NA 9.6 2 X = 6.7 9.6 2 M= 1 00
4.6 NA 55 6 42 55 6 1 00

Finding the Bayes predictor.

f* € argmin E [(Y - f()?))2] .

f: RISR

f*()?) = Z E [Y|Xobs(m)7 M = m] Wy
me{0,1}9

= One model per pattern (27) (Rubin, 1984, generalized propensity score)

4
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Make prediction with missing data great again

Bayes predictor.

f*()?) = Z E [Y|Xobs(m)7 M = m] Tp=m
me{0,1}9

> Difficulty due to the half nature of the input space
> Worst case: 29 models to learn

Two common strategies:

> Impute-then-regress strategies - impute the data then learn on the
imputed data set
< Computationally efficient but possibly inconsistent

> Pattern-by-pattern strategies - use a different predictor for each
missing pattern
< Consistent by design but intractable in most situations



. Missing values mechanism

. Single Imputation

. Multiple Imputation

. Imputation quality

. Supervised Learning with Missing values

Decision trees as PbP predictors

. Linear models

. Conclusion

49 /99



CART (Classification And Regression Tree, 1984)

Built by recursively splitting cells until some stopping criterion is satisfied.

Find the feature j*, the threshold z* which minimises the loss

(Jj*,z*) € argmin E

(,2)es
1
... ::..0.... . ..- k=0 O
0 . z

(Y =BIYIX < 2D)° g+ (Y — BIYIX > 2])° - L.

50
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CART (Classification And Regression Tree, 1984)

Built by recursively splitting cells until some stopping criterion is satisfied.

Find the feature j*, the threshold z* which minimises the loss

(Jj*,z*) € argmin E

(.2)es

XM >05

50 /99

(Y =BIYIX < 2D)° g+ (Y — BIYIX > 2])° - L.



CART (Classification And Regression Tree, 1984)

50 /99

Built by recursively splitting cells until some stopping criterion is satisfied.

Find the feature j*, the threshold z* which minimises the loss

(Jj*,z*) € argmin E

(Y =BIYIX < 2D)° g+ (Y — BIYIX > 2])° - L.

U,2)es
1
A :..-.. . .. k=0
R N L
N R
0.5 ; < « L . X2 <05 X >02
L] .
. ® ... ‘ . o ° k=2
.
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CART (Classification And Regression Tree, 1984) =/

Built by recursively splitting cells until some stopping criterion is satisfied.

Find the feature j*, the threshold z* which minimises the loss

(*,z%) € ng;’nin E[(Y —E[YIX; < 2])? - Lxes + (Y —E[Y]X; > 2])? - llx,.>z]~
j,z)ES

Two difficulties with missing data

> How to find the best split?
> How to propagate missing data down the tree?
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CART with missing values

X1 X2 | Y k=0 XMW <05 XM >05
1 k=1
2 NA
3 NA
4




CART with missing values

X1 | X | Y xW <05 X0 >05

DW=

Two steps:

1. For each variable, compute the splitting criterion on observed values only
(e.g., 1 & 4 for X1)

]E[(Y —E[Y|X; <z, M = o])2 “Ix;<z,m=0 + (Y —E[Y|X; >z, M; = 0])2 ) ]1Xj>z,Mj:o]-



CART with missing values
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k=0
X1 Xo |'Y XM <05 XM >05

1 k=1

2

3

4
Two steps:
1. For each variable, compute the splitting criterion on observed values only

(e.g., 1 & 4 for X1)

E[(Y —E[YIX < 2, M; = 0)* - Lo+ (Y —E[YIX > 2, M; = 0))° - Lygsom—o -

Propagate observations (2 & 3) with missing values?

> Probabilistic split: Bernoulli(#L/(#L + #R)) (C4.5)

> Block: Send all to a side by minimizing the error (1ightgbm)

> Surrogate split: Search another variable that gives a close
partition (rpart)

99



Missing incorporated in attribute (MIA)*3 5299

One step: select the variable, the threshold and propagate missing values

1. {)~(j<zor)~(j:NA}vs{)~<j>z}
2. {X; <z} vs {X;>zor X; =NA}
3. {X; #NA} vs {X; = NA}.

v

The splitting location z depends on the missing values
Missing values treated like a category (well to handle R UNA)
Good for informative pattern, target one model per pattern:

v v

E {Y‘X] - Z E [Y[Xops(my: M = m] Lyy—pm
me{0,1}9

v

Implementations grf/partykit package, XGBoost
Extremely good performances in practice for any mechanism

v

3Twala et al. (2008). Methods for coping with missing data in decision trees. Pattern Recog.



. Missing values mechanism

. Single Imputation

. Multiple Imputation

. Imputation quality

. Supervised Learning with Missing values
Impute-then-regress procedures with consistent predictors

. Linear models

. Conclusion
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Impute-then-Regress procedures

> Impute-then-Regress procedures consist in

1. Impute missing values
2. train a supervised learning algorithm on the imputed data set.



Impute-then-Regress procedures

> Impute-then-Regress procedures consist in
1. Impute missing values
2. train a supervised learning algorithm on the imputed data set.
> More formally, define Impute-then-Regress procedures as functions of

the form:
go®, whered € F' g :RY = R.

O O ¢ (3 3)
L@
@\@

O O &0, x3)

where imputation functions
® € F! are of the form:
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Impute-then-Regress procedures

> Impute-then-Regress procedures consist in
1. Impute missing values
2. train a supervised learning algorithm on the imputed data set.
> More formally, define Impute-then-Regress procedures as functions of

the form:
go®, whered € F' g :RY = R.

O O ¢ (3 3)
L

©
@\O% 2" (x2, x3)

o

where imputation functions
® € F! are of the form:

Can Impute-then-Regress procedures be Bayes optimal?
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Impute-then-Regress procedures are Bayes optimal */~

Given an imputation function ®, we define g5 the minimizer of
the population risk on imputed data as

~\2
gy € argmin E {(Y—gocb(X)) ] )
g:RI—R



Impute-then-Regress procedures are Bayes optimal */~

Given an imputation function ®, we define g5 the minimizer of
the population risk on imputed data as

~\2
gs € argmin E {(Y —god)(X)) ] .
g:RI—R

Theorem ( Le Morvan et al., 2021 )

Assume that X admits a density, the response Y is generated as
Y = f*(X) +¢e and ® € F! (C> imputation functions). Then,

e for all missing data mechanisms,
e and for almost all imputation functions,

84 o @ is Bayes optimal.




Impute-then-Regress procedures are Bayes optimal */~

Given an imputation function ®, we define g5 the minimizer of
the population risk on imputed data as

~\2
gs € argmin E {(Y —goCD(X)) ] .
g:RI—R

Theorem ( Le Morvan et al., 2021 )

Assume that X admits a density, the response Y is generated as
Y = f*(X) +¢e and ® € F! (C> imputation functions). Then,

e for all missing data mechanisms,
e and for almost all imputation functions,

&y © ® is Bayes optimal.

For almost all imputation functions, and all missing data
mechanisms, a universally consistent algorithm trained on the
imputed data is a consistent procedure.



Which imputation function should one choose? /99

9 |
Q
N

'

2
£

May be a good imputation
would still provide an
easier learning problem?

Why bother!
From now on I use constant
imputations!
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Which imputation function should one choose?

~ & \/
@] &

.
QJ)

Question Are there continuous Impute-then-Regress
decompositions of Bayes predictors?

&

May be a good imputation
would still provide an
easier learning problem?

Why bother!
From now on I use constant
imputations!

From now on, we suppose f* (Byes predictor with complete data) is
smooth and consider the conditional expectation ¢



Learning on conditionally imputed data

Question What can we say about the optimal predictor on the
conditionally imputed data: gge o ®<'?



Learning on conditionally imputed data /9

Question What can we say about the optimal predictor on the
conditionally imputed data: gge o ®¢'?

Theorem ( Le Morvan et al., 2021 )

Suppose that f* o ® s not Bayes optimal, and that the probability of
observing all variables is strictly positive, i.e., P(M =0,X = x) > 0, for
all x. Then there is no continuous function g such that g o ®¢' is Bayes
optimal.

> In the above setting, g5 is not continuous. Thus, imputing via
conditional expectation leads to a difficult learning problem.

> Almost all imputations lead to consistent estimators but some ease the
training of the supervised learning algorithm.



Imputation-then-regress: does imputation matter? =

Adding the mask to the input (one mask per feature):

X1 Xo X1 X2 My M
1 2 1 2 0 0
3 NA | — 3 NA 0 1
NA 4 NA 4 1 0

From an empirical study over 19 datasets**:

44M. Le Morvan, G. Varoquaux, Imp. for pred.: beware of diminish. returns. (ICLR2025)

“SMike et al. (2023). The Missing Indicator Method: From Low to High Dimensions. SIGKDD.

99
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Imputation-then-regress: does imputation matter?

Adding the mask to the input (one mask per feature):

X1 X X1 X2 My M
1 2 1 2 0 0
3 NA | — 3 NA 0 1
NA 4 NA 4 1 0

From an empirical study over 19 datasets**:

> when using expressive models or when
incorporating the mask as complementary inputs®
> for generated linear outcomes than

for real-data outcome
> for prediction performances even for
MCAR settings, where missingness is uninformative.

44M. Le Morvan, G. Varoquaux, Imp. for pred.: beware of diminish. returns. (ICLR2025)
“SMike et al. (2023). The Missing Indicator Method: From Low to High Dimensions. SIGKDD.
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Imputation-then-regress: does imputation matter?

Adding the mask to the input (one mask per feature):

X1 X X1 X2 My M
1 2 1 2 0 0
3 NA | — 3 NA 0 1

NA 4 NA 4 1 0

From an empirical study over 19 datasets**:

> when using expressive models or when
incorporating the mask as complementary inputs®
> for generated linear outcomes than

for real-data outcome
> for prediction performances even for
MCAR settings, where missingness is uninformative.

Investing in more flexible models is more efficient than investing in
more complex imputations.

44M. Le Morvan, G. Varoquaux, Imp. for pred.: beware of diminish. returns. (ICLR2025)
“SMike et al. (2023). The Missing Indicator Method: From Low to High Dimensions. SIGKDD.
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Summary so far

Bayes predictor

f*()?) = Z E [Y|Xobs(m)7 M = m] Tp=m
me{0,1}9

Two common strategies:
> Impute-then-regress strategies - impute the data then learn on the
imputed data set
<o Computationally efficient but possibly inconsistent
o Consistent if used with a non-parametric learning algorithm (forests,
tree boosting, nearest neighbor...)

> Pattern-by-pattern strategies - use a different predictor for each
missing pattern
o Consistent by design but intractable in most situations



Summary

6. Linear models
Linear regression: A pattern-by-pattern approach
Linear regression: Impute-then-regress procedures via zero-imputation
Classification with missing values
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Missing data and linear models

MCAR
Predict on new data, which may (missing completely at random)

contain missing entries. M) = o)
MAR (missing at random)
P(M|X) = P(M]X(°b))

MNAR (missing not at random)

Linear model

Y = X' 3* + noise

> Y € R (regression) outcome is always observed
> X € RY contains missing values!
> 5* model parameter
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Linear models do not remain linear

Let
Y=X1+Xo+¢,

where X5 = exp(X1) + 1. Now, assume that only Xj is observed. Then,
the model can be rewritten as

Y = X1 +exp(X1) + € + e,

where f(X1) = X; + exp(X1) is the Bayes predictor.

Here, the submodel for which only X is observed is not linear.

= There exists a large variety of submodels for a same linear model.
=- Submodel natures depend on the structure of X and on the
missing-value mechanism.



Handling missing values in linear models for predictiéon”

2 possible approaches

> Patter-by-pattern methods
> Impute-then-regress procedures

103 . 10? .
| [~ Cst-imp+LR 0—|rT1.p+SGD.
| —#- MICE+LR opti-imp+Ridge
10? | .= NeuMiss N - MICE+Ridge
\ i 10 - Pat-by-Pat
| -+ P-by-Pimp y
8 100 | .-~ Thresholded P-by-P imp 2 | DR
V] S i N o :
3 $ 10 :
X~ X~ :
2 :
Z 1 Z 5
107t :
1071 Xy
R\
N
: (S8
10-2 ' 10-2 d=vn; d=ni “x
10! 102 10° 10* 10t 10? 10°
Number of training samples Number of features d

Fixed dimension Fixed sample size



Different strategies for prediction

A

d

2) Impute then regress:
Naive imputation [Ayme et al 2023] d = \/Z

1) Specific methods:
Pattern-by-pattern regression [Ayme et al 2022]

v
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. Missing values mechanism
. Single Imputation

. Multiple Imputation

. Imputation quality

. Supervised Learning with Missing values

. Linear models
Linear regression: A pattern-by-pattern approach

. Conclusion



Specific methods: formalization %/

> Dataset D, = {(Z;, Y;),i € [n]} where
Zi - (Xobs(/\/l,)7 MI)

> New test point Z = (Xops(m), M) (with unknown target Y).

Goal in prediction

Find a linear function fthat minimizes the risk

Ruiss(F) = E [(F(Z) _ Y)z] .
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Pattern-by-pattern Bayes predictor

Consider either

> X ~N(pX) Gaussian (G)
or,

> X|(M=m)~N(um™xm) Gaussian pattern mixture model (GPMM)

Decompose the Bayes predictor

f*(Z) = Z fr;(Xobs(m))llem,
meM

with £ the Bayes predictor conditionally on the event (M = m).

Proposition [Le Morvan et al 2020]
If [[MCAR or MAR) and G] or GPMM then, for all m € M,

.
fxis linear.
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A missing-distribution-free upper bound

Predictor f(Z) =D meM ?:,,(Xobs(m))]lM:m (pattern-by-pattern OLS)
where ?;,, is a modified least-square regression rule trained on

Dy = {(Xi,obs(m)a Yl)v M; = m} .

Theorem (simplified) [Le Morvan et al. 2020] [Ayme, Boyer, Dieuleveut, S.

2022]
If (MCAR or MAR) and G] or GPMM then

E [(?(2) - f*(Z))z} < Iog(n)2d%

where the constant depends on the level of noise.
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A missing-distribution-free upper bound

Predictor f(Z) =D meM ?:,,(Xobs(m))]lem (pattern-by-pattern OLS)
where ?,,, is a modified least-square regression rule trained on

Dy = {(Xi,obs(m)a Yl)7 M; = m} .

Theorem (simplified) [Le Morvan et al. 2020] [Ayme, Boyer, Dieuleveut, S.

2022]
If (MCAR or MAR) and G] or GPMM then

E [(?(2) - f*(Z))z} < Iog(n)2d%

where the constant depends on the level of noise.

> This result does not depend on the distribution of missing patterns.
> Number of parameters is p := d27. This result suffers from the curse
of dimensionality even with small d.



A missing pattern distribution adaptive bound %/

Idea: Regression only on high frequency missing patterns

Z f obs(m) ]lM m]l\D |>d-
meM



A missing pattern distribution adaptive bound %/

Idea: Regression only on high frequency missing patterns

Z f Xobs(m)) IM=m1 D, |>d-
meM

Theorem [Ayme, Boyer, Dieuleveut, S. 2022]

E|(72)- (@) ] Stoato)s, (41,

with &, (d/n) := >, min(pm, d/n).

> Valid for MCAR, MAR and MNAR settings.

> Adaptive to missing data distribution via &, (d/n) < Card(M)(d/n).
Examples

1. Uniform distribution: &, (¢) =27d/n

2. Bernoulli distribution: M; ~ B(e) with e < d/n: &, (¢) = d?/n



A lower bound

X|(M = m) ~ N (", £7)
Let P, be a class of data distributions { Linear model
IP[M = m] = Pm

Minimax _ . ra _ f* 2
La(p) = min ma e [(F(2) - 4(2))

Best algo



A lower bound -

X|(M = m) ~ N (", £7)
Let P, be a class of data distributions { Linear model
IP[M = m] = Pm

e = min ma B |(f(2) - (2))]

Best algo  Worst case on a class
Py of problems

Theorem [Ayme, Boyer, Dieuleveut, S. 2022]

1

o2, () S VMo (p) <E [("@ ) W’ﬂ S <)
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A lower bound

X|(M = m) ~ N (", £7)
Let P, be a class of data distributions { Linear model
IP[M = m] = Pm

e = min ma B |(f(2) - (2))]

Best algo  Worst case on a class
Py of problems

Theorem [Ayme, Boyer, Dieuleveut, S. 2022]
. _ 2
2, (1) 5 Minex(p) < E[(712) - (2))"] 5 gty (2)
n n
Examples
> Uniform distribution (L) =2%n & () =2%d/n
> Bernoulli distribution M; ~ B(e) & (L)y=d/n & (2)= d°/n

with e < d/n



Take-home messages

== For data regimes where n is large, several problems can be learned,
even for MNAR.

= The procedure can be modified to adapt to the distribution of missing
patterns.

= The dimension is an issue, even under the classical assumptions
(MAR)
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. Missing values mechanism
. Single Imputation

. Multiple Imputation

. Imputation quality

. Supervised Learning with Missing values

. Linear models

Linear regression: Impute-then-regress procedures via zero-imputation

. Conclusion



Impute-then-regress? ne

> |Impute-then-regress method

1. Impute the missing values by 0 to get Ximp (e.g., via
df.fillna(0))
2. Perform a SGD regression
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Impute-then-regress?

> |Impute-then-regress method
1. Impute the missing values by 0 to get Ximp (e.g., via
df.fillna(0))
2. Perform a SGD regression
> Focus on MCAR values: My, ..., My ~ B(p)
p = probability to be observed

impute by 0= doesn’t exploit observed values?



Risk decomposition

v

R* = optimal risk without missing data

> Ry .. = optimal risk with missing data
Aniss = R — R” (missing data error)

v

Rimp(e) = the risk of ﬁ?(Xobsa M) = 0T)<imp

> Rimp(ei’tnp) = optimal risk of linear prediction after imputation by 0
Aimp/miss = Rimp(eitnp) - thliss (imputation error)

> Risk decomposition:

Rmiss(fe) - R* + Alﬂi.\h + Ahup miss + Rlniss(f@) - Rimp(eitnp)

missing data and imputation error estimation /optimization error

99



Toy example: how imputed inputs disturb learning *'*

> Complete model

& Y:X1
<& X:(Xl,...,X]_)
o R*=0

< Ml,...,MdNB(]./Q)



Toy example: how imputed inputs disturb learning *'*

> Complete model

& Y:X1
< X:(Xl,...,Xl)
o R*=0

< Ml,...,MdNB(1/2)

> With imputed inputs and #; = (1,0,...,0)T
<& Xilpel = X1M1

o Rimp(61) = 3E [Y?]

> With imputed inputs and 6, = 2(1/d,1/d,...,1/d)"
<& )<i—|nj1p02 = %Xl Z_] IWJ
& R;mp(()z) = %E "Xlzw
<& A\Hi.\h ‘ Ai!ll}),,f”lllih\‘ g Rimp(()z) R* < %E [Y2]



Toy example: how imputed inputs disturb learning *'*

> Complete model

& Y:X1
<& X:(Xl,...,Xl)
o R*=0

< Ml,...,MdNB(1/2)

> With imputed inputs and #; = (1,0,...,0)T
& Xilpel = X1M1

o Rimp(61) = 3E [Y?]

> With imputed inputs and 6, = 2(1/d,1/d,...,1/d)"
<& )<i—|r;p02 = %Xl Z_] ,wJ
& R;mp(()z) = %E [Xf}
¢ A\Hi.\h + Aimp/mi»’ < Rimp(()Q) - R* < %E [Y2]

correlation = low imputation/missing values error ?



Learning w/ imputed-by-0 data = ridge reg? 5759

> Ridge-regularized risk with complete data

RA(0) = R(6) + Al1013

> Standard in high-dimension settings

Theorem [Ayme, Boyer, Dieuleveut, S. 2023]

Under the MCAR Bernoulli model of probability p of observation and
Var(X;) =1V,

Rmp(60) = R(p8) + p(1 — p)|16]3

Consequences
1—p

1. Amiss + Dimp/miss = ridge bias for \ = =

2. 0, on a small ball around 0 (implicit regularization)

== Imputed MCAR missing values seem to be at the same price of ridge
regularization



Learning with low-rank and imputed-by-0 data
> Low-rank data: covariance matrix ¥ = [XX "] is
Z=) Ayyl
j=1

with \; =--- = A, and r < d.
> Bias on low-rank data:

1—pr
Aniss + Aimp/miss S Tp QE[Y2]

correlation = low imputation/missing values error !

7

99



Learning with imputed-by-0 data via SGD

> Averaged SGD iterates:

{ qimpft = [l - ’y)(imp,t)ﬂ—nl:p’t
0

1 n X
impn = 7y Dote1 Oimp,t

> Why use SGD 7

1.
2.

w

Streaming online (one pass only)
Minimizes directly the generalization
risk R

Friendly assumptions

Leverage the implicit regularization
of naive imputations choosing

Q;mp,o =0 and Y= 1/d

] Himp,tfl + ’Yyt)<imp,t

Implicit regularization




Learning with imputed-by-0 data via SGD /e

Theorem [Ayme, Boyer, Dieuleveut, S. 2023]

Under classical assumptions for SGD,

noise variance

7

_ d
E [Rimp(eimp,n)] —R* < Amiss + Aimp/miss + % ”Qtnp”% +




79 /99

Learning with imputed-by-0 data via SGD

Theorem [Ayme, Boyer, Dieuleveut, S. 2023]

Under classical assumptions for SGD,

_ d noise variance
E [Rimp(eimp,n)] —R* < Apiss + Aimp/miss + % ”Qtnp”% + T

> Example: low-rank setting

~ 1 L—p\r noise variance
E {Rup(Oimp.n)| — R* S | —= —EY?4 ————

» Imputation bias vanishes for d > \/n




Naive imputation implicitly regularizes HD linear modéls

. Performing Adding a ridge
> MCAR lanItS standard linear regression regularization w/ parameter|
(observation rate=p) on imputed-by-0 data = = e
> Allin all

2) Impute then regress: naive
' d imputation [Ayme et al 2023]

d=+/n
MCAR assumption \/—

The issue of missing

values vanishes 1) Specific methods: pattern-by-pattern

with the regression [Ayme et al 2022]
dim 29y parameters

Minimax under
MAR/MNAR assumptions

n




. Missing values mechanism
. Single Imputation

. Multiple Imputation

. Imputation quality

. Supervised Learning with Missing values

. Linear models

Classification with missing values

. Conclusion
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Linear Discriminant Analysis 4° /9

Let P(Y = 1) = 0.5 and Vk € {—1,1}, X|Y = k ~ N (1, E).

Bayes predictor for the complete case:

. _ —+ u_
Ramp(5) = sign (1 = 0o0) £ (= ) )

46 A primer on linear classification with missing data A.D.R. Lobo, A. Ayme, C.
Boyer, E. Scornet



Linear Discriminant Analysis 4° v

Bayes predictor for the complete case:

i - o
homp(x) = sign ((#1 —poy) T (x - %)) '

Proposition: Bayes predictor for LDA+MCAR

Assume LDA + MCAR. Then the PbP Bayes classifier satisfies

. Te—
hfn(XObs(m)) = Slgn((,ufl,obs(m) - N—l,obs(m)) zobls(m)

H1,0bs(m) + H—1,0bs(m) ))
5 5

X (Xobs(m) -

46 A primer on linear classification with missing data A.D.R. Lobo, A. Ayme, C.
Boyer, E. Scornet



Linear Discriminant Analysis 4° v

Bayes predictor for the complete case:

o i - +pe
hiomp(x) := sign ((ul —pog) T (x - %)) .

Proposition: Bayes predictor for LDA+MCAR

Assume LDA + MCAR. Then the PbP Bayes classifier satisfies

. Te—
hfn(Xobs(m)) = Slgn((ul,obs(m) - N—l,obs(m)) zobls(m)

H1,0bs(m + H—1,0bs(m
X (Xobs(m)_ @) 2 ( )))

> PbP strategy is Bayes optimal
> Constant imputation is not optimal (if X is nondiagonal)
> Extension to MNAR scenarios (GPMM)

46 A primer on linear classification with missing data A.D.R. Lobo, A. Ayme, C.
Boyer, E. Scornet
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Logistic Model

Logistic model

P[Y = 11X] = o(B5 + X, 87 X;) with o(t) = 1/(1 + e™?).

Bayes classifier: g*(X) = 1,05 with 7*(X) = E[Y|X = X].

lll-specified PbP logistic regression

Assume MCAR data in a logistic model for complete data with
Xi,...,Xq independent Gaussian random variables. Let m € {0,1}? and
assume that there exists a vector 3% € RI°PS(MI+1 sych that

P (Y = 1|Xobs(m)7 M = m) = U(ﬁg,m +Z ﬁ;m&)
Jj€obs(m)

Then, for all j € mis(m), B =0
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Logistic Model

Ill-specified PbP logistic regression

Assume MCAR data in a logistic model for complete data with
Xi, ..., Xq independent Gaussian random variables. Let m € {0,1}? and
assume that there exists a vector 3% € RI°Ps(MI+1 gych that

P (Y = 1| Xobs(m)s M = m) = a(ﬁg’m +3 ﬁjjmxj).
Jj€obs(m)

Then, for all j € mis(m), 6]* =0

> Logistic model cannot hold on complete data AND on data with a

given missing pattern
> Constant imputation Impute-then-Logistic-Regression is ill specified

ELY Xobs(uay: M = m] = E[E[YX] Xabau| = B|7(X) Xopa

d
#o (E[ﬁa +y BJWIXobs(Mﬂ) :
j=1



Theoretical Results*

Denote ®(t) the probit function: ®(t) = (2r)~1/2 f_too e t/2dt,

Assume a logistic model on complete data and a GPMM:
X|M =m ~ N(tm,Xm). Then, for all m, the Bayes probability on
pattern m, n};,, satisfies for all x € RIoPs(m),

.
M(x) — o <M> < 2||e]|o = 0.036,

1+ (7/8)52,

where e(t) = ®(t) — o(t\/8/), and ag m, tm, 5%,

Theoretical ground for understanding why PbP logistic regression
performs well in practice while being ill-specified.

See also*”

4TK.A. Verchand, A. Montanari, High-dimensional logistic regression with missing
data: Imputation, regularization, and universality

48C. Muller, E. Scornet, J. Josse, When Pattern-by-Pattern Works: Theoretical and
Empirical Insights for Logistic Models with Missing Values



Methods evaluated

> Pattern-by-pattern (PbP): Logistic regression on
each pattern



Methods evaluated

> Pattern-by-pattern (PbP)
> Mean imputation (Mean.IMP): Mean per covariate
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Methods evaluated

> Pattern-by-pattern (PbP)

> Mean imputation (Mean.IMP)

> Fully specified (SAEM): Fully parametrized model,
assuming normal covariates + logistic regression,
optimized by Iterative EM



Methods evaluated

> Pattern-by-pattern (PbP)

> Mean imputation (Mean.IMP)

> Fully specified (SAEM)

> Imputation by MICE (MICE.IMP): lterative
imputation by iterative MICE algorithm
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Methods evaluated

> Pattern-by-pattern (PbP)
> Mean imputation (Mean.IMP)
> Fully specified (SAEM)
> Imputation by MICE (MICE.IMP)
— Allow multiple imputations (MICE.K.IMP): Fit
logistic on each dataset, average predictions
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Methods evaluated

> Pattern-by-pattern (PbP)

> Mean imputation (Mean.IMP)

> Fully specified (SAEM)

> Imputation by MICE (MICE.IMP)
— Allow multiple imputations (MICE.X. IMP)
— Add M during imputation process (MICE.M.IMP)
— Add Y during training of imputation process

(MICE.Y.IMP)
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Gaussian features (MCAR)
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> X ~N(0,X)

> 5 dimensions

> 10 replicates

> Toeplitz correlation
matrix (0.65 corr.)

> MCAR with prob.
0.25

— PDbP approaching the Bayes prob. (large training set)

— Necessary to use multiple imputations with MICE

— Necessary to add Y to MICE imputation
— SAEM and MICE.100.Y.IMP best overall



Non-linear features (MCAR)

0.200

0175

0150

0125

0.100

0075

0.050

0.025

0.000

102 10° 104
Number of training samples

102 10° 10¢
Number of training samples

88

> X non-linear
transformation of
N(0,5)

> 5 dimensions

> 10 replicates

> ¥ Toeplitz matrix
(0.65)

> MCAR with prob
0.25

— No method can estimate Bayes probabilities
— SAEM suffers from misspecification
— PbP not approaching Bayes, coherent with our Theorem
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Non-linear features (MCAR): details per pattern =/~

Gaussian missing (21) Gaussian missing (22 Fxponent al mssing (23} Cubic missing (74) Non-monotonic missing (5)
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Figure C.7: Performances of selected procedures in terms of MAE from Bayes probabilities. The results are displayed by
missing pattern in the test set (with one missing index: [1,0,0,0,0], ..., [0,0,0,0,1]). Means and standard errors over 10
replicates of non-linear features with MCAR. missingness are displayed (see Sectiun. The curves from MICE.10.IMP
and MICE.100.IMP overlap in the first 4 plots.



Mixture of Gaussian (MNAR) 9% / 99

> X|IM=m~

Classification 0.200 Probability Estimation
0175 N('_u”” zm)
oo > 5 dimensions
5 %oz > 10 replicates
g § o100 > X Toeplitz matrix
S g0 > MCAR with prob
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— Only the PbP strategy performs well
— Coherent with theory



Conclusion

> Theoretically, altough misspecified, Pattern-by-pattern performs well
under gaussian covariates (MCAR or Pattern Mixture Model)

> Confirmed experimentally: in GPMM-MNAR, PbP is one of the most
competitive methods.

Empirically,

> MICE imputation consistently performing well in MCAR setting

1.  With the use of multiple imputations
2. With the inclusion of Y in covariates

3. But needs non-linear inner regressor for non-linear covariates

> M(N)AR settings are more tricky
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Summary

1. Missing values mechanism
2. Single Imputation

3. Multiple Imputation

4. Imputation quality

5. Supervised Learning with Missing values
Decision trees as PbP predictors
Impute-then-regress procedures with consistent predictors

6. Linear models
Linear regression: A pattern-by-pattern approach
Linear regression: Impute-then-regress procedures via zero-imputation
Classification with missing values

7. Conclusion
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Take home messages on Imputation

Missing mechanisms

> Different missing data scenario (MCAR, MAR, MNAR).

> Both % of NA & structure matter (5% of NA can be an issue)

> MAR was designed for likelihood inference (e.g. EM algorithm) but can hide
many complex distributions (distribution shift in MAR).

> Few implementations of EM strategies.
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Take home messages on Imputation

Missing mechanisms

> Different missing data scenario (MCAR, MAR, MNAR).

> Both % of NA & structure matter (5% of NA can be an issue)

> MAR was designed for likelihood inference (e.g. EM algorithm) but can hide
many complex distributions (distribution shift in MAR).

> Few implementations of EM strategies.

> Results in a complete data set, on which any method can be applied.
> Imputation is both seductive & dangerous (Dempster & Rubin, 1983).

o Seductive: can lull the user into the pleasant state of believing that the
data are complete

¢ Dangerous: it lumps together situations where the problem is minor
enough to be handled in this way & situations where estimators applied to
the imputed data have substantial biases.

4
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Take home messages on Imputation

Missing mechanisms

Different missing data scenario (MCAR, MAR, MNAR).

Both % of NA & structure matter (5% of NA can be an issue)

MAR was designed for likelihood inference (e.g. EM algorithm) but can hide
many complex distributions (distribution shift in MAR).

Few implementations of EM strategies.

vV VvV V

v

Imputation

> Results in a complete data set, on which any method can be applied.
> Imputation is both seductive & dangerous (Dempster & Rubin, 1983).

| A\

Single imputation

> From simple (mean imputation) to more complex strategies
(MissForest)

> Useful for point estimates

> Distort the marginal and joint distributions

> Lead to confidence interval with poor coverage
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Take home messages on Imputation

Single imputation

> From simple (mean imputation) to more complex strategies
(MissForest)

> Useful for point estimates

> Distort the marginal and joint distributions

> Lead to confidence interval with poor coverage

Multiple imputation

> Look for an imputation that preserve the joint distribution of the data

> MI aims at estimating the parameters and their variability taking into
account the uncertainty of the missing values

> Useful for confidence intervals

> Compare imputations with distributional metrics like energy distance

> mice-DRF promising (code available) - mice-Engression?

?Shen & Meinshausen (2024). Engression: extrapolation through the lens of distributional
regression. JRSS B.
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Take home messages - Supervised learning

Estimating the Bayes predictor in presence of missing values

f*()?) = Z E [Y|Xobs(m)7 M = m] Tp=m
me{0,1}4

Two common strategies:

> Impute-then-regress strategies - impute the data then learn on the
imputed data set
o Computationally efficient but possibly inconsistent

> Pattern-by-pattern strategies - use a different predictor for each
missing pattern
o Consistent by design but intractable in most situations
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Take-home messages - Supervised learning

Decision trees

> Decision trees are among the few methods able to natively handle
missing values (MIA)

> Amounts to PbP strategies with a data-driven selection of relevant
patterns

Impute-then-regress

| A\

> Consistent for any imputation method when the predictor is universally
consistent

> Use the same imputation for train and test sets

> In finite sample, some imputation may ease the training of the
predictor (e.g., Conditional Imputation is not well-suited in general)

> Rethinking imputation: a good imputation is the one that makes the
prediction easy
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Take-home messages - Linear models

Pattern-by-Pattern

> Rate in 29/n in the worst case

> Improved by performing regressions on the most frequent patterns only

> Rate in d2/n for MCAR Bernoulli, with a probability of missingness small
enough

> MNAR/MAR is not suited for prediction (GPMM)

Impute-then-Regress

| \

> Inconsistent in fixed dimension

> Consistent in high dimensions with a slow rate n™

> Imputation by zero amounts to a ridge regularization with a strength
depending on the missing probability

1/2

| \

Logistic regression model

> PbP and constant imputation result in inconsistent predictor

> But in presence of Gaussian features, Bayes probabilities are correctly
estimated by PbP

> PbP competitive in GPMM-MNAR scenario but deteriorates when input
distribution is not Gaussian

A\




Thank you!*

Inere are two, tlmes [1]]
’ lleoule inthis; wnrltl

49More ressources: https://rmisstastic.netlify.app/
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