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Julie Josse: Research in Statistical Methodology

Academic background:
▷ Professor at Ecole Polytechnique (IP Paris) (2016 - 2020)

▷ Visiting researcher Stanford Univ. (2013-2016), Google (2019 - 2020)

▷ Senior Researcher at Inria Montpellier (Sept. 2020 -). Lead Inria-Inserm

PreMeDICaL team: precision medicine by data integration & causal learning

Composed of MD, researchers in ML, biostat, PhDs with medical degree

Research topics: Balance between theory and application
▷ Dimensionality reduction to visualize high dimensional multi modal data

▷ Missing values: max likelihood, matrix completion, supervised learning

▷ Causal inference: combining trials & observational data, optimal policy

⇒ Transfert of research through software developments (R foundation,

packages, etc.)

Multidisciplinary and societal projects:
▷ Traumatrix: Clinical decision aid system to improve the triage & care of

trauma patients ⇒ Clinical trial launching in 2025: real-time model

implementation in ambulances via mobile data collection app.

▷ ICUBAM: Real time info gathering & vizualization on ICU beds availability
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Presentation Jeffrey Näf

Academic background:
▷ PhD in Statistics from ETH Zürich (2018-2022)

▷ Postdoc in the PreMeDICaL Inria team, Montpellier (2023-2025)

▷ Assistant Professor in Business Analytics and Statistics at the Research

Institute for Statistics and Information Science, University of Geneva (Feb.

2025 -)

Research topics: Distributional Estimation, Robust Estimation and

Applications
▷ Distributional Prediction: Distributional Random Forest and Various

extensions

▷ Missing values: Imputation, Imputation scoring

▷ Robust Estimation: Robust High-Dimensional Covariance Matrix

estimation, MMD estimation

⇒ Transfert of research through software developments

Application in Marketing Research:
▷ CLVTools: Implementation of Probabilistic Modelling for Marketing Research
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(Online) Decision support tool with quantified uncertainty

Ex: Traumatrix project1: Reducing under and over triage for improved resource

allocation in trauma care
Major trauma: brain injuries, hemorrhagic shock
from car accidents, falls, stab wounds

⇒ requires specialized care in ”trauma centers”

Patients misdirected: human/ economical costs

Clinical trial launched in 2025: real-time implementation of Machine Learning

models in ambulance dispatch via a mobile data collection application

1www.traumabase.eu - https://www.traumatrix.fr/
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Traumabase: an observational French registry on trauma3

▷ 40000 trauma patients

▷ 300 heterogeneous features from pre-hospital and in-hospital settings

▷ 40 trauma centers, 4000 new patients per year

Center Accident Age Sex Lactate Blood Pres. Shock Platelet . . .

Beaujon fall 54 m NM 180 yes 292000

Pitie gun 26 m NA 131 no 323000

Beaujon moto 63 m 3.9 NR yes 318000

Pitie moto 30 w Imp 107 no 211000
...

. . .

⇒ Explain and Predict hemorrhagic shock, need for neurosurgery and

need for a trauma center given pre-hospital features.

Ex: logistic regression/ random forests + Quantify uncertainty2

2Zaffran, J., Dieuleveut, Romano. Conformal Prediction with Missing Values. ICML 2023.
3www.traumabase.eu - https://www.traumatrix.fr/
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Personalization of treatment recommendation

Ex: Estimating treatment effect from the Traumabase data

▷ 40000 trauma patients

▷ 300 heterogeneous features from pre-hospital and in-hospital settings

▷ 40 trauma centers, 4000 new patients per year

Center Accident Age Sex Weight Lactacte Blood TXA. Y

Press.

Beaujon fall 54 m 85 NA 180 treated 0

Pitie gun 26 m NA NA 131 untreated 1

Beaujon moto 63 m 80 3.9 145 treated 1

Pitie moto 30 w NA NA 107 untreated 0

HEGP knife 16 m 98 2.5 118 treated 1
...

. . .

⇒ Estimate causal effect (with missing values4): Administration of the

treatment tranexamic acid (TXA), given within 3 hours of the accident, on the

outcome (Y ) 28 days in-hospital mortality for trauma brain patients

4Mayer, I., Wager, S. & J.. (2020). Doubly robust treatment effect estimation with incomplete

confounders. Annals Of Applied Statistics. (implemented in package grf). 6



Going beyond meta-analysis with federated causal inference6

⇒ Difficulty to share individual-level data: data silos & regulations

Bridging causal inference and federated learning to improve treatment effect

estimation from decentralized data sources - Going beyond meta-analysis on

individual data5

5 Morris, T. et al. (2018). Meta-analysis of Gaussian individual patient data: Two-stage or not

two-stage? Stat. Med.
6 Khellaf R, Bellet, A. & J.. (2025). Multi-study ATE estimation beyond meta-analysis. AISTAT. 7
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Missing values7, 8, 9

are everywhere: unanswered questions in a survey, lost data,

damaged plants, machines that fail...

”The best thing to do with missing values is not to have

any”

⇒ Still an issue in the ”big data” area

Data integration: data from different sources
7Little & Rubin (2019). Statistical Analysis with Missing Data, Third Edition, Wiley.
8Van Buuren (2018). Flexible Imputation of Data. Second Edition, Chapman & Hall.
9Schafer (1997). Analysis of Incomplete Multivariate Data, Chapman & Hall.
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Missing data: important bottleneck in statistical practice
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Different types of missing values

Multilevel data: Sporadic & Systematic missing values (feature/hospital) 9



Missing data: important bottleneck in statistical practice
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”One of the ironies of Big Data is that missing data play an ever more

significant role”10

Complete case analysis: delete incomplete samples

• Bias: Resulting sample not representative of the target population

• Information loss: Take a matrix with d features where each entry is missing

with probability 1/100, remove a row (of length d) when one entry is missing

d = 5 =⇒ ≈ 95% of rows kept

d = 300 =⇒ ≈ 5% of rows kept

10Zhu, Wang, Samworth. High-dimensional PCA with heterogeneous missingness. JRSSB. 2022.
10



Missing data: important bottleneck in statistical practice
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Solutions to handle missing values in the covariates

Abundant literature: Creation of Rmistatic platform11 (> 150 packages)

Inferential aim: Estimate parameters & their variance, i.e. β̂, V̂ (β̂)

to get confidence intervals with the appropriate coverage

Modify the estimation process to deal with missing values

Maximum likelihood inference: Expectation Maximization algorithms12

(Multiple) imputation to get a complete data set. Ex: (M)ICE

Matrix completion aim: Predict the missing values as well as possible.

Solutions: using low rank matrix approximation13

Predictive aim: Predict an outcome with missing data in covariates1415.

Solutions: using deterministic (e.g. constant) imputation or Missing

Incorporated in Attributes for trees based methods (grf package)

11Mayer, J. et al. A unified platform for missing values methods and workflows. R journal. 2022.
12Jiang, J. et al. Logistic Regression with Missing Covariates CSDA. 2019. - misaem package
13Robin, Klopp, J., Moulines, Tibshirani. Main effects & interac. in mixed data. JASA. 2019.
14J. et al. Consistency of supervised learning with missing values. Stats papers. 2018-2024.
15Le morvan, J. et al. What’s a good imputation to predict with missing values? Neurips2021. 11

https://rmisstastic.netlify.com/
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Outline

▷ Monday

⋄ Introduction - Missing values mechanisms

⋄ Single imputation, Multiple imputation

⋄ Likelihood approaches

⋄ Practice

▷ Tuesday

⋄ PCA with missing values - Matrix completion

⋄ Supervised learning with missing values

⋄ Uncertainty quantification

⋄ Practice

▷ Wednesday

⋄ Causal inference with missing values

⋄ Advanced topics

12



What is a ’true’ missing value?

First analysis to perform with missing data (and any data): descriptive study

Visualize their patterns for clues as to how & why they occur FactoMineR16

Anomaly Osthmot. Improv. SBP DBP

No NA NA 150 100

Yes Mannitol Yes 99 41

No NA NA 110 76

Yes SSH NA 114 50

No NA NA 116 NA

Multiple Correspondence Analysis with numeric

values coded as Obs & missing as NA

• Detect nested variables: Anomaly

Osmotherapy=NANo

Osmotherapy
SSH

Mannitol
Yes

⇒ Not a ’true’ missing value, does not mask an underlying value

⇒ Solution: recode with a 3-level variable ’Yes Mannitol’, ’Yes SSH’, ’no’

⇒ Feedback on data collection/encoding process

16Husson, J., Le. FactoMineR: An R Package for Multivariate Analysis. JSS. (2008)
13
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)

Anomaly_No

Osthmotherapy_Mannitol

Osthmotherapy_NA

Osthmotherapy_SSH

Improvement_yes

SBP_transp_NA
DBP_transp_NA

• Detect nested variables: Anomaly

Osmotherapy=NANo

Osmotherapy
SSH

Mannitol
Yes

⇒ Not a ’true’ missing value, does not mask an underlying value

⇒ Solution: recode with a 3-level variable ’Yes Mannitol’, ’Yes SSH’, ’no’

⇒ Feedback on data collection/encoding process

16Husson, J., Le. FactoMineR: An R Package for Multivariate Analysis. JSS. (2008)
13
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Missing values mechanism: Rubin’s taxonomy17,18

• Random Variables:

▷ X ⋆ ∈ Rd : complete unavailable data, X ∈ Rd : observed data with NA

▷ M ∈ {0, 1}d : missing pattern, or mask, Mj = 1 if and only if Xj is missing

• Realizations: For a pattern m, o(x ,m) = (xj)j∈{1,...,d}:mj=0 the observed

elements of x and while oc(x ,m) = (xj)j∈{1,...,d}:mj=1, the missing elements.

x⋆ = (1, 2, 3, 8, 5)

x = (1,NA, 3, 8,NA)

m = (0, 1, 0, 0, 1)

o(x ,m) = (1, 3, 8), oc(x⋆,m) = (2, 5)

17Rubin. Inference and missing data. Biometrika. 1976.
18What Is Meant by ”Missing at Random”? Seaman, et al. Statistical Science. 2013.
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Missing values mechanism: Rubin’s taxonomy17,18

• Random Variables:

▷ X ⋆ ∈ Rd : complete unavailable data, X ∈ Rd : observed data with NA

▷ M ∈ {0, 1}d : missing pattern, or mask, Mj = 1 if and only if Xj is missing

For a pattern m, o(x ,m) = (xj)j∈{1,...,d}:mj=0 the observed elements of x and

while oc(x ,m) = (xj)j∈{1,...,d}:mj=1, the missing elements.

Ex: Simulated missing values according to the 3 mechanisms (Orange points

will be missing) in Systolic Blood Pressure - GCS is always observed
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Missing Not At Random

(MNAR)

If not MAR: it is MNAR

17Rubin. Inference and missing data. Biometrika. 1976.
18What Is Meant by ”Missing at Random”? Seaman, et al. Statistical Science. 2013. 14



Two views to model the joint distribution of (X ,M)

Selection Model19: p∗(M = m, x) = P(M = m | x)p∗(x)

Definition (SM-MAR)

P(M = m|x) = P(M = m|o(x ,m)) for all m ∈ M, x ∈ X .

The proba. of any m occurring only depends on the obs part of x .

Pattern Mixture Model20: p∗(M = m, x) = p∗(x | M = m)P(M = m)

Definition (PMM-MAR)

p∗(oc(x ,m) | o(x ,m),M = m) = p∗(oc(x ,m) | o(x ,m)).

for all m ∈ M, x ∈ X . The conditional distrib. of missing given obs. in

pattern m is equal to the unconditional one.21

Proposition (SM-MAR is equivalent to PMM-MAR)

19Heckman. Sample selection bias as a specification error. Econometrica. 1979
20Little. Pattern-mixture models for multivariate incomplete data. JASA. 1993
21Molenberghs et al. Every MNAR model has a MAR counterpart with equal fit. JRSSB. 2008 15
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MAR with shift in marginal distribution between patterns

• Gaussian PMM: X ∗ | M = m ∼ N(µm | Σm). Ex: for two patterns

m1 = (0, 0) and m2 = (1, 0) and a shift:

X =

(
x1,1 x1,2

NA x2,2

)
,M =

(
0 0

1 0

)
=

(
m1

m2

)
.

• Not identifiable without restriction. How distributions can change?

p∗(x1 | x2,M = m1)︸ ︷︷ ︸
p∗(oc (x,m2)|o(x,m2),M=m1)

= p∗(x1 | x2,M = m2)︸ ︷︷ ︸
p∗(oc (x,m2)|o(x,m2),M=m2)

= N(x2, 1)(x1) = p∗(x1 | x2).

Definition (Conditional indep. MAR - CIMAR)

p∗(oc(x ,m) | o(x ,m),M = m′) = p∗(oc(x ,m) | o(x ,m)).

for all m,m′ ∈ M, x ∈ X .equivalent to oc(X ∗,m) | o(X ∗,m) |=M

16
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MAR with shifts in conditional distribution between patterns

X =

x1,1 x1,2 x1,3

NA x2,2 x2,3

NA NA x3,3

 ,M =

0 0 0

1 0 0

1 1 0

 =

m1

m2

m3


CIMAR

p∗(x1, x2 | x3,M = m1) = p∗(x1, x2 | x3,M = m2) = p∗(x1, x2 | x3,M = m3) =

p∗(x1, x2 | x3)

Distrib. of X1,X2 | X3 is not allowed to change from one pattern to

another, though the marginal distrib. of X3 can change.

PMM-MAR

p∗(x1, x2 | x3,M = m3) = p∗(x1, x2 | x3)

Both distrib. of observed variables and conditional ones can

change from pattern to pattern.

MCAR: No change allowed.

m ∈ M,m′ ∈ M, x ∈ X , p∗(x) = p∗(x | M = m) = p∗(x | M = m′) 17



Relationships between the M(N)AR conditions22

22Naf, Scornet J.. (2024). What is a good imputation under MAR. Submitted.

18



MNAR data: identifiability issues, few solutions in practice

Before estimation, we should prove the identifiability of the parameters

Example: Credit: Ilya Shpitser XNA = [1,NA, 0, 1,NA, 0]

▷ Case 1: X missing only if X = 1.

X = [1, 1, 0, 1, 1, 0], P(X = 1) = 2/3

▷ Case 2: X missing only if X = 0.

X = [1, 0, 0, 1, 0, 0], P(X = 1) = 1/3

⇒ Start from 2 equal observed distribution. It leads to different

parameters of the data distribution P(X = 1)

Identifiability: the parameters of (X ,M) are uniquely determined from

available information (X ,M = 0)

Estimation: restrictive setting (few variables, only missing values on the

outcome, simple models) 23 24 25

23Ibrahim, et al. Missing covariates in glm when the mechanism is non-ignorable. JRSSB. 1999.
24Tang. Statistical inference for nonignorable missing-data. Statistic. theory & rel. fields. 2018.
25Mohan, Thoemmes, Pearl. Estimation with incomplete data: The linear case. IJCAI. 2018.

19



Testing the missing values mechanism

▷ An obvious question is whether one can observe the missing value

mechanism from the sample.

▷ The answer in general is no! (Unfortunately)

▷ However if we assume MAR is true we can test H0 : MCAR vs

HA : MAR.

▷ A classical test is the Little test26 that operates under the assumption

of Gaussianity.

▷ One of the very few (if not only) useable nonparametric test is our

PKLMTest27

▷ There is also interesting theoretical work28

26Little. A Test of Missing Completely at Random for Multivariate Data with Missing Values. 1988
27Michel, Naf, Spohn, Meinshausen. PKLM: a flexible MCAR test using classification,

Psychometrika. 2025
28Berrett, Samworth. Optimal nonparametric testing of missing completely at random and its

connections to compatibility, AoS. 2023

20



Hints on the missing values mechanism

▷ Importance of contextual information:

⋄ Important information is missing from datasets, which is often

uncovered through collaborative discussions.

⋄ The context affects how data is coded and interpreted.

▷ Examples:

⋄ Distribution changes in gravity scores due to funding tied to patient

severity.

⋄ Missing values due to team disagreements; Orientation depends of

trust/reputation

Importance of communication with experts - Limits of AutoML?

21



Inference with missing values

22



Solutions to handle M(C)AR values (in the covariates)

Abundant literature: Creation of Rmistatic platform29 (> 150 packages)

Inferential aim: Estimate parameters & their variance, i.e. β̂, V̂ (β̂)

to get confidence intervals with the appropriate coverage

Modify the estimation process to deal with missing values

Maximum likelihood inference: Expectation Maximization algorithms

Pros: Tailored toward a specific problem

Cons: Few softwares even for simple models. Ex: logistic regression30

Need to design one specific algorithm for each statistical method

(Multiple) imputation to get a complete data set

Pros: Any analysis can be performed. Implementation: mice R

package, IterativeImputer scikitlearn (option posterior equals true)

Cons: Generic

29Mayer, J. et al. A unified platform for missing values methods and workflows. R journal. 2022.
30Jiang, J. et al. Logistic Regression with Missing Covariates, Parameter Estimation, Model

Selection and Prediction. CSDA. 2019. - Implementation in the misaem package
23

https://rmisstastic.netlify.com/
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Single Imputation



Single imputation by the mean31

▷ (xi1, xi2) ∼
i.i.d.

N2((µx1 , µx2),Σx1x2)

▷ 70 % of missing entries completely at random on X2

▷ Estimate parameters on the mean imputed data

X1 X2

-0.56 -1.93

-0.86 -1.50

..... ...

2.16 0.7

0.16 0.74

50

100

150

200

50 100 150 200
X1

X
2

µx2 = 0

σx2 = 1

ρ = 0.6

µ̂x2 = −0.01

σ̂x2 = 1.01

ρ̂ = 0.66

31The code to reproduce the plots is available in Rmistastic
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Single imputation by the mean31

▷ (xi1, xi2) ∼
i.i.d.

N2((µx1 , µx2),Σx1x2)

▷ 70 % of missing entries completely at random on X2

▷ Estimate parameters on the mean imputed data

X1 X2

-0.56 NA

-0.86 NA

..... ...

2.16 0.7

0.16 NA

0

50

100

150

50 100 150 200
X1

X
2

µx2 = 0

σx2 = 1

ρ = 0.6

µ̂x2 = 0.18

σ̂x2 = 0.9

ρ̂ = 0.6

31The code to reproduce the plots is available in Rmistastic
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Single imputation by the mean31

▷ (xi1, xi2) ∼
i.i.d.

N2((µx1 , µx2),Σx1x2)

▷ 70 % of missing entries completely at random on X2

▷ Estimate parameters on the mean imputed data

X1 X2

-0.56 0.01

-0.86 0.01

..... ...

2.16 0.7

0.16 0.01

100

150

200

50 100 150 200
X1

X
2

imputed

FALSE

TRUE

mean imputation

µx2 = 0

σx2 = 1

ρ = 0.6

µ̂x2 = 0.01

σ̂x2 = 0.5

ρ̂ = 0.30

Mean imputation deforms joint and marginal distributions
31The code to reproduce the plots is available in Rmistastic
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Mean imputation should be avoided for estimation

●

−5 0 5

−
6

−
4

−
2

0
2

4
6

8

Individuals factor map (PCA)

Dim 1 (44.79%)

D
im

 2
 (

23
.5

0%
)

alpine

boreal

desert
grass/m

temp_for
temp_rf

trop_for
trop_rf

tundra

wland

●
●●

●

●●
●

●

●
●●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

● ●

●
●●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

● ●
●

●
●

●

●

●

● ●
●

●
●●

●

●
●

●

●●●
●

●

●

●

●

●

●

●
●

●

●
●

●●
●

● ●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●●

●●
●

●

●

●●

●●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●
● ●

●
●

●

●

●
● ●

●
●
●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●

●
●

●
●

●●
●
●

●●
●

●

●

●

● ●

●

●
●

●
●

● ●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●

● ●● ●

●
●●

●
●

●
●●

●
●

●
●

●●●
●●●

●
●●
●

●

●

●

●

●●

●

●
●●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●●●
●

●
●

●

●

●

●

●

●●
●

●
●

● ●
●

●●

●●
● ●

●
●● ● ●●

●

● ●●
●
●

● ●
●

●
●●

●
●

●
●

●

●

● ●

●

●
●

●

●●

● ●

●
●

●

●

●

●
●

●
●

●
● ●

●
●

●

●

● ●●●
●

●

●

●●●

●●

●●

●

●●

●

●

●

●●●
●

●

●

●●
●

●

●
●

●

●

●● ●●

●
●

●

●

●

●●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●●●

●

●●

●

●●

●

●●

●

●

●
●

●

●
●●

● ●●
●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●
●

●

●●

●

●

●

●●

●

● ●● ●●●

●

●●

●●

●

●
●

●

●

●● ●

●

●
●

●

●

●

●

●●●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●
● ●●

●

●

●
●

●

●
●
●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●
● ●

●

●●●●

●
●

●

●

●

●●

●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●

●

● ●

●

● ●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●●●●

●

●

●

●
●●

●

●

●●

●

●

●

●

●
●●

●
●

●●

●

●●
●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●●
●

●

●
●●

●●

●
●

●

●

●
●

●
●

●

●●

●●
●

●
●

●
●●●

●●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●
●

●●

●●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●
●

●●

●
●●●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●●
●●●
●●

●

●

●
●

●●

●
●

●

●

●

●●●
●●●

●

●●●
●

●
●

●●●●
●●

●●●●●
●

●
●

●
●

●
●

●●●●
●

●●●●●●
●●●●●●●●●

●●●
●●●

●
●●

●
●●●

●●●●
●●

●
●

●

●

●

●●

●

●●●
●

●

●●
●

●
●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●●●
●

●
●

●

●

●
●

●●●●●●●●
●

●
●

●

●
●●

●
●

●●●
●●●●●●

●

●●●
●●

●●●
●●●●

●
●

●
●●

●●●

●

●
●

●
●

●
●

●

●

●
● ●

●

●●

●

●

●

●

●
●●

●●

●●

●

●
●

●

●

● ●● ●

●

●

●

●

●

●

●

●
●

●●●●

●

●
●●

●●
●

●

●

●

●●
●

●
●

●●
●

●●●

●

●

●●
●●●

●●

●
●●●●●●●

●●●

●

●

●●●●●●
●●●

●

●●●

●

●
●●

●

●●●●

●

●
●

●
●

●●●

●
●●

●●●●●
●

●
●

●●
●

●
●●

●
●

●●

●

●
●●

●

●

●

●
●

●

●

●●

●●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●
●

●

●●
●

●

●

●
●

●

●
●●

●
●

●
●

●●
●●●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●●

●
●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●●

●
●●●

●

●

●
●

●

●●

●

●●
●

●

●●

●
●●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●

●

●●●
●

●

●

●●●

●●

●●

●●●
●●

●●
●

●
●

●●

●
●

●●

●●

●●●
●●

●
●

●●●●
●
●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●
●

● ●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

● ●
● ●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●

●●●
●●●●

●●
●●●●●
●

●●
●●

●●
●●

●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●●●●
●

●

●●
●

●●
●

●
●●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●●
●●●

●
●

●

●

●
●

●●●

●

●

●

●●
●

●

●

●

●

●
●

●
●●

●

●●
●

●

●

●●●●
●●●

●

●

●

●

●●●●

●

●

●
●●

●
●●●

●

●

●
●

●

●●
●

●●●
●

●

●

●●

●●

●

●●●
●

●
●

●
●

●
●

●●●●●●

●
●

●
●

●
●●●●●
●

●
●

●●
●●●●●●●
●●

●

●●
●●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●●●

●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●
●●●

●●
●
●● ●

●●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●
● ●●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●

●●●●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●
●
●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●● ●

●●

●

●

●
●●

●
● ●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●
●

●
●

●

●
●●

●
●●

●

●

●

●

● ●
●

●

●

●

●

●

●●
● ●
●
●●

●

● ●

●

●●
●

●

●
●

●

alpine
boreal
desert
grass/m
temp_for
temp_rf
trop_for
trop_rf
tundra
wland

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Variables factor map (PCA)

Dim 1 (44.79%)

D
im

 2
 (2

3.
50

%
)

LL

LMA

Nmass

Pmass

Amass
Rmass

LL

LMA

Nmass

Pmass

Amass
Rmass

LL

LMA

Nmass

Pmass

Amass
Rmass

LL

LMA

Nmass

Pmass

Amass
Rmass

LL

LMA

Nmass

Pmass

Amass
Rmass

LL

LMA

Nmass

Pmass

Amass
Rmass

LL

LMA

Nmass

Pmass

Amass
Rmass

LL

LMA

Nmass

Pmass

Amass
Rmass

LL

LMA

Nmass

Pmass

Amass
Rmass

●

−10 −5 0 5

−
6

−
4

−
2

0
2

4
6

Individuals factor map (PCA)

Dim 1 (91.18%)

D
im

 2
 (

4.
97

%
)

alpine

boreal

desert
grass/mtemp_fortemp_rf

trop_fortrop_rf
tundra

wland
●

●

● ●

●

●

●

●

● ●

●●

●●●
●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ● ● ●

●

●

●
●

●●
●

●
●

● ●

●

●

●
●

●
●

●
●

●● ●

●
●

●
●

●

●

●●

●●

●

●

●

●

●
●

●
●

●
●

●
●●

●
●

● ●

●

● ●

●
●

●

●

●

●

●

● ●
●

●●
●

●●

●

●

●● ●

●

●

●

●

●
●

●

●

● ●
●●

●

●
●

●

●

●●

●
●

●

●

● ●

●

● ●

●

●

●
●

●

●
● ●●

●
●
● ●

●

●

●

●●●
●●● ●

●● ●

●

●
●

●

● ●●

●

●
●

●●
●

●

●

●

●
● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●
●

●

●

●
●

●●

●
●●●

●

●
●

●● ● ●

●

●
●

●●

●

●●

●

●●●
● ●

●

● ●●
●

●
●

●
●

●

●

●
●

●
●

● ● ● ●●

●
● ●

●

●

●

●

●●

●

●

●
● ●●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●
●●

●

●
●

●●

●●
●●

●

●

●

●
●

●

●

●

●

●

● ●

●
● ●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
● ●

●

●

●

●●

●

● ●●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●●
●●

●

● ●
●

●
●

●
●

●●●

●

●
●

●

●

● ●

●

●●
●

●

●

●
●

●

●

●
●

●

●●

●
●●

●

● ●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●

● ● ●●

●

●

●

●

● ●●
●

●

●

●

●●
●

●
●●

●

●
●

●

●

●
●

●
●●

●

●

●
●
●

●

●
● ●

●

●

● ●

●

●

●
● ● ●

●●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

● ●

●●

●

●

●
●●

●
●

●

●
●

●

●
●

●●
●●

●

●

●

●

●

● ●

●

●
●

●

●●●
●

●

●
●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

● ●●

●

●

●●

●●●

●

●

●
● ●

●

●

●
●

●

●

●
● ●●

●
●●●

●

●
●

●●
●

●

●●

●
●

●

●●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●
●●

●
● ●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

● ●

●
●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●●

●●
● ●

●

●
●

●●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●● ●
●

●

●
●

●●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●
●

●

●

● ●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●●

●
●●

●

●
●

●

●
● ●

●
●

●
●●●

●

●
●

●●

● ●

●

●
●

●

●
●

●

●

●

●
●

●
●●

●

●
●●

●
●

●

●

●
●

●

●

● ●●

●

●
●

●
●● ●

●

●

●

●

●
●

●
● ●

●● ●
●

●

● ●

●

●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●

●●●●●● ●

●
● ● ●

●
● ● ●

● ●
●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●
● ●●●

●
●

●

●

●

●

●

●
● ● ●

●
●

●

●●●

●

●

●● ●●

● ●
●

● ●●
●

●

●●
●

●

●
●

●

●

●●●

●●

●

● ●

●
●

●
●

●
●

●
●

● ●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●
●

● ●

●●
●

●
● ●●

●
●

●
●

●
●

●

●

●
●

●●

●

●

●
● ●●

●

●
●

●●
●

●
●●

●

●

●

●
● ● ●

● ● ●●● ● ●
●

●

●
●

●●

●
●

●

●

●

● ●●
●●●

●

●● ●
●

●
●

●●● ●
● ●

●●● ●●
●

●
●

●
●

●
●

● ●●●
●

●●●●● ● ● ●●●●● ●● ● ● ● ●
● ●●

●●●

●
●● ●

●●

●

●
●

●● ●● ●●●● ●●●●
●

●

●

●

●●

●

●

● ●

●

●●
●

●

●

●
●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●
●

● ●● ●● ● ●●●
●

●
●

●
● ●

●
●

● ●●
● ● ● ●●●

●

●●●
●●

●● ● ● ●● ●●
●

●
● ●

●

●●

●

●
●

● ●●●
●●

●

● ● ●

●

●

●

●
●

●

●

●● ●●
●

●

●
● ●

●

●● ●●

● ●

●●

●

●

●
●

●
●

●● ●●

●

● ●●
●●

●
●

●

●

● ● ●
●

●
●●

●
● ●●

●

●
●●

●● ●
● ●

●●●●● ●●●
● ●●

●

●
●●●● ●●

● ● ●

●

●●●

●

●
●●

●
●● ●●

●
●

●
● ●

●● ●
●

●●
●●●●● ●

● ●
●●

●
●

● ●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●● ●

●
● ●

●

●
●

●

●

●
●●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●
● ●

●●

●
●

●

●
●

● ●
●

●

●●

●

●

●

●●

●

●

●● ●

● ●
●●

●

●

●

● ●●● ●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●●

●

●●

●
●

●

●

●
●

●● ●● ●
●

●

●
●●

●

●

● ●●
●

●

●
●

● ●
●

●

●●
●

●●●

●

●

●

●

●

●
● ●

●●
●

● ●

●

●

●
●

● ●
●

●

●

●
●

●

●

●
●

●

●

●●

●●
● ●● ● ●

●●
●

●
●

●●

●
●

●●

● ●

● ● ●
● ●

●●
●●●● ●●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●● ●

●
●●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●
●●

●

● ●

●
●

●
●

●
●
●

●
●

● ●
●

● ●●

●
● ●

●

●
●

●
●

●

●
●

●●●

●

●

●

●

●

● ●
●

● ●
●

●

●
●

●

● ●

●●

●

●

●

●

●
●

●

●●
●

●● ●● ●●
●●●
●● ●●

●●
● ●●●●

●
●●

● ●
●●

●●
●●●●●

●

●
●●●

●

●
●

●
●

●

●

●

●
●

●● ●●
●

●

●●

●

●

●

●

●

●

●
●●● ●

●
●

●
●

●
●

●

●
● ●● ●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●
●

●
●

●

●

● ●

● ●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●●●

●●●

●

●

●

●

●

●

●●
●

●

●

●● ●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●●

●

●

●

●●
●

●

●

●

●
● ●

●● ●●●●● ● ●●● ●● ● ●● ●● ● ●●● ● ●● ●● ●●● ● ●
●● ●●

●
●

●

●●

●

●●
●

●

●●
●

●●

●

●●

●

●

●

●

●

●
● ●

●

●

●
●

●
●●

●
●

●

●
●●

●
●

●

●

●●

●

●
●

●● ●
●

●●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●
●

●
●

●●

●

●
●

●
●

●

●

●

●
● ●●

●
●

●
●● ●

●
●

●

●●

●

●

●
●

●●

●

● ● ●

●
●●

●

●
●●

●
●
●

● ●●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●
●● ●

●
●

●

●

●

●

●
●

● ●

●
●
●

●
●

●

●

●

●
● ●

●

●●
●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●
●●

●

●
●

● ●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

● ●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●
●●

●
●

●
● ●

●●

●

●●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
● ●

●

●

●
● ●

●

●●
●

●
●

●

●● ●●

●

●

●
●

●

●
●●

●

●

●

●●
●

● ●
●●

●

●

●
●

●●●

●
●

●
●

●
●

●●

●
●

●

●
●

●

●

●

● ●

●●

●

●

●
●

●

●●
●

●

alpine
boreal
desert
grass/m
temp_for
temp_rf
trop_for
trop_rf
tundra
wland

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Variables factor map (PCA)

Dim 1 (91.18%)

D
im

 2
 (

4.
97

%
)

LL

LMA

Nmass
Pmass

Amass

Rmass

PCA with mean

imputation

library(FactoMineR)

PCA(ecolo)

Warning message: Missing

are imputed by the mean

of the variable:

You should use imputePCA

from missMDA

EM-PCA

library(missMDA)

imp <- imputePCA(ecolo)

PCA(imp$comp)

J. & Husson.

missMDA: Handling

Missing Values in

Multivariate Data

Analysis, JSS. 2016.

Ecological data: 32 n = 69000 species - 6 traits. Estimated correlation between

Pmass & Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)
32Wright, I. et al. (2004). The worldwide leaf economics spectrum. Nature. 25

http://factominer.free.fr/missMDA/index.html


Objective: to impute while preserving distribution

Assuming a bivariate gaussian distribution xi2 = β0 + β1xi1 + εi , εi ∼ N (0, σ2)

▷ Regression imputation: Estimate β (here with complete data) and impute

x̂i2 = β̂0 + β̂1xi1 ⇒ variance underestimated and correlation overestimated

▷ Stochastic reg. imputation: Estimate β and σ - impute from the predictive

x̂i2 ∼ N
(
β0 + β̂1xi1, σ̂

2
)
⇒ preserve distributions

100

150

200

50 100 150 200
X1

X
2

imputed

FALSE

TRUE

mean imputation

100

150

200

50 100 150 200
X1

X
2

imputed

FALSE

TRUE

regression imputation

50

100

150

200

50 100 150 200
X1

X
2

imputed

FALSE

TRUE

stochastic regression imputation

µx2 = 0

σx2 = 1

ρ = 0.6

0.01

0.5

0.30

0.01

0.72

0.78

0.01

0.99

0.59
26



Impute while preserving distribution. Multivariate case

Assuming a joint distribution

▷ Gaussian model xi ∼ N (µ,Σ)

▷ Low rank : Xn×d = µn×d + ε εij
iid∼N

(
0, σ2

)
with µ of low rank

⇒ Different regularization depending on noise regime 33

⇒ Count data34, ordinal data, categorical data, blocks/multilevel data

▷ Optimal transport 35, deep generative models: GAIN36, MIWAE 37, etc. 38 39

Iterating conditional models (joint distribution implicitly defined)

▷ with parametric regression (M)ICE: (Multiple) Imput. by Chained Equations 40

▷ iterative imputation of each variable by random forests 41

33J. & Wager. Stable autoencoding for regularized low-rank matrix estimation. JMLR. 2016.
34Robin, Klopp, J., Moulines, Tibshirani. Main effects & interac. in mixed data. JASA. 2019.
35Muzelec, Cuturi, Boyer, J. Missing Data Imputation using Optimal Transport. ICML. 2020.
36Yoon et al. GAIN: Missing data imputation using generative adversarial nets. ICML. 2018.
37Mattei & Frellsen. Miwae: Deep generative model. & imput. of incomplete data. ICML. 2018.
38Deng et al. Extended missing data imput. via gans. Data Mining & Knowledge Discovery. 2022.
39Fang Bao. Fragmgan gan for fragmentary data imputation. Stat.theory & Related Fields. 2023.
40van Buuren, S. Flexible Imputation of Missing Data. Chapman & Hall/CRC Press. 2018.
41Stekhoven & Bühlmann. MissForest–non-parametric imputation for mixed data. Bioinfo. 2012. 27
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Iterative imputation by random forests versus by low rank

(PCA)

Feat1 Feat2 Feat3 Feat4 Feat5...

C1 1 1 1 1 1

C2 1 1 1 1 1

C3 2 2 2 2 2

C4 2 2 2 2 2

C5 3 3 3 3 3

C6 3 3 3 3 3

C7 4 4 4 4 4

C8 4 4 4 4 4

C9 5 5 5 5 5

C10 5 5 5 5 5

C11 6 6 6 6 6

C12 6 6 6 6 6

C13 7 7 7 7 7

C14 7 7 7 7 7

Igor 8 NA NA 8 8

Frank 8 NA NA 8 8

Bertrand 9 NA NA 9 9

Alex 9 NA NA 9 9

Yohann 10 NA NA 10 10

Jean 10 NA NA 10 10

Missing

Feat1 Feat2 Feat3 Feat4 Feat5

1 1.0 1.00 1 1

1 1.0 1.00 1 1

2 2.0 2.00 2 2

2 2.0 2.00 2 2

3 3.0 3.00 3 3

3 3.0 3.00 3 3

4 4.0 4.00 4 4

4 4.0 4.00 4 4

5 5.0 5.00 5 5

5 5.0 5.00 5 5

6 6.0 6.00 6 6

6 6.0 6.00 6 6

7 7.0 7.00 7 7

7 7.0 7.00 7 7

8 6.87 6.87 8 8

8 6.87 6.87 8 8

9 6.87 6.87 9 9

9 6.87 6.87 9 9

10 6.87 6.87 10 10

10 6.87 6.87 10 10

missForest

Feat1 Feat2 Feat3 Feat4 Feat5

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2

2 2 2 2 2

3 3 3 3 3

3 3 3 3 3

4 4 4 4 4

4 4 4 4 4

5 5 5 5 5

5 5 5 5 5

6 6 6 6 6

6 6 6 6 6

7 7 7 7 7

7 7 7 7 7

8 8 8 8 8

8 8 8 8 8

9 9 9 9 9

9 9 9 9 9

10 10 10 10 10

10 10 10 10 10

imputePCA

⇒ Imputation inherits from the method: Random forests handles non

linear relationships/ PCA linear ones
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Imputation by forests versus regression imputation

-3 -2 -1 0 1 2 3

0
5

10

true data

X2

X
3

Observed

Missing

-3 -2 -1 0 1 2 3

0
5

10

mice CART

X2

X
3

Observed

Missing

-3 -2 -1 0 1 2 3

0
5

10

Gaussian imputation

X2

X
3

Observed

Missing

-3 -2 -1 0 1 2 3

0
5

10

Regression imputation

X2

X
3

Observed

Missing
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Imputation with joint model with Gaussian distribution

⇒ Assumption joint gaussian model xi ∼ N (µ,Σ)

• Bivariate case with missing values on x2: stochastic regression

▷ estimate β and σ

▷ impute from the predictive x̂i2 ∼ N
(
xi1β̂, σ̂

2
)

• Extension to the multivariate case:

▷ Estimate µ and Σ from an incomplete data with EM

▷ Impute by drawing from the conditional distribution

Xmis|Xobs ∼ N (µmis|obs,Σmis|obs)

µmis|obs = E[Xmis] + Σmis,obsΣ
−1
obs,obs (Xobs − E[Xobs]) .

Σmis|obs = Σmis − Σmis,obsΣ
−1
obs,obsΣobs,mis . Schur complement.

> library(norm)

> pre <- prelim.norm(as.matrix(don))

> thetahat <- em.norm(pre)

> imp <- imp.norm(pre, thetahat, don) 30



Fully conditional specification - FCS, (M)ICE

1. Fill NA with plausible values to get an initial completed dataset

2. For j ∈ {1, . . . , d}, t ≥ 1 use a univariate imputation to sample new

imputed values x
(t+1)
j ∼ p∗(xj | x (t)−j ), where x

(t)
−j = {x (t)l }l ̸=j the imputed

& observed values of other variables except j at the tth iteration.

3. Iterate until convergence

Figure 1: Source: [?]
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(Non) Identifiability under non-parametric MAR

Definition: Imputing with a mixture of distribution

p∗(oc(x ,m) | o(x ,m)) is identifiable from M0 ⊂ M if there exists

some weights wm′(o(x ,m)) (summing to 1) such that the mixture

h∗(oc(x ,m) | o(x ,m)) =
∑

m′∈M0

wm′(o(x ,m))p∗(oc(x ,m) | o(x ,m),M = m′)

satisfies p∗(oc(x ,m) | o(x ,m)) = h∗(oc(x ,m) | o(x ,m)).

Proposition: Identifiability under PMM-MAR is not trivial42

Assume |M| > 3. For any pattern m ∈ M, p∗(oc(x ,m) | o(x ,m)) is

- identifiable from any other pattern m′ ̸= m under CIMAR,

- is not identifiable from any single pattern m′ ̸= m under PMM-MAR.

If
∣∣∣∑d

j=1 mj

∣∣∣ > 1, p∗(oc(x ,m) | o(x ,m)) is not identifiable from Lm,

the set of patterns for which oc(x ,m) is observed.

Lm = {m′ ∈ M : m′
j = 0 for all j such that mj = 1}.

42Näf, Scornet J.. (2024) What is a good imputation under MAR. Submitted. 32



Identifiability under MAR considering one variable at a time

• Consider the following mixture of distribution

h∗(xj | x−j) =
∑
m∈Lj

P(M = m)∑
m∈Lj

p∗(x−j | M = m)P(M = m)
p∗(x | M = m),

with Lj = {m ∈ M : mj = 0}, the patterns where xj is observed

Theorem43: Identifiability of the right conditional distribution

Assume PMM-MAR holds,

h∗(xj | x−j) = p∗(xj | x−j), for all x−j with p∗(x−j) > 0

At Xj , one can reduce the |M| patterns to two, one where Xj is missing,

and one where it is observed. Though these two aggregated patterns are

mixtures of several patterns m ∈ M, MAR implies that both aggregated

patterns have the same conditional distribution X ∗
j | X ∗

−j

43Näf, Scornet J.. (2024) What is a good imputation under MAR. Submitted. 33



Fully conditional specification - FCS, (M)ICE

1. Fill NA with plausible values to get an initial completed dataset

2. For j ∈ {1, . . . , d}, t ≥ 1 use a univariate imputation to sample new

imputed values x
(t+1)
j ∼ pt(xj | x (t)−j ), where x

(t)
−j = {x (t)l }l ̸=j the imputed

& observed values of other variables except j at the tth iteration.

3. Iterate until convergence

Theorem44 shows that if we assume to have access to the true

distribution p∗(x−j) (assume x−j is well imputed), we can impute

according to the true distribution p∗(xj | x−j) by drawing from the

conditional distrib. of Xj | X−j learned from all patterns in which xj is

observed

FCS approach can identify the right conditional distributions under

PMM MAR

44Näf, Scornet J.. (2024) What is a good imputation under MAR. Submitted
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What is a good imputation method under MAR?

▷ both conditional and marginal distribution shifts can occur for

different patterns under MAR.

▷ conditional shifts are handled with FCS

An ideal imputation method should

▷ (1) be a distributional regression method,

▷ (2) be able to capture nonlinearities in the data,

▷ (3) be able to deal with distributional shifts in the observed variables,

▷ (4) be fast to fit,

1-3 are crucial for imputation under MAR

4 is only relevant to reduce the computational burden.

Rk: Block-wise FCS (multi-output methods to impute variables as

blocks) should not be used: do not recover the correct distribution

35



What is a good imputation method?

(1) be a distributional regression method,

(2) be able to capture nonlinearities in the data,

(3) be able to deal with distributional shifts in the observed variables,

Method (1) (2) (3)

missForest (Stekhoven & Bühlmann, 2011) ✓

mice-cart (Burgette & Reiter, 2010) ✓ ✓

mice-RF (Doove et al., 2014) ✓ ✓

mice-DRF (Näf et al., 2024) ✓ ✓

mice-norm.nob (Gaussian) ✓ ✓

mice-norm.predict (Regression) ✓

▷ mice-cart/RF estimate a tree, a forest, on observed data and then draw

imputations from the leaves (approx conditional distribution) whereas

distributional forest 45 is a distributional method

45Cevid, Näf et al., Distributional Random Forests. JMLR. 2022
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Forests generalize poorly outside of the training set

Ex: Variables income & age with MAR missing values in income

Figure 2: True distribution against a draw from different imputation methods.

DRF, a distributional method > mice-RF but fails to deal with the

covariate shift (centering ≈ 2 instead of 5).

Finding an imputation method that meets (1) - (4) is still an open

problem!
37



Empirical study: ranking with energy scores and not RMSE

Gaussian relation with shifts Non linear relation with shifts

Ex with d = 6, n = 1500, 20% NA and CIMAR, XOc = Bf (XO) +

ε1

ε2

ε3


Energy distance46 between imputed & real data

d(H,P∗) = 2E[∥X − Y ∥Rd ]− E[∥X − X ′∥Rd ]− E[∥Y − Y ′∥Rd ],

where ∥ · ∥Rd is the Euclidean metric on Rd , X ∼ H, Y ∼ P∗ and X ′,Y ′ are

independent copies of X and Y .
46Székely & Rizzo. Energy statistics Journal of stat. planning & inference. 2013
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Empirical study: ranking with energy scores and not RMSE

credit: Krystyna Grzesiak, Michal Burdukiewicz47 230 scenarios (10

missing values patterns 23 different-size datasets)

47imputomics: web server and R package for missing values imputation in

metabolomics data. Bioinformatics 2024.
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What if the underlying values are not available?

▷ The question of how to evaluate imputation methods becomes much

harder when the true underlying values are not available.

▷ The energy distance is directly related to the energy score48:

es(H, y) = EX∼H [∥X − y∥Rd ]− 1

2
EX ,X ′∼H [∥X − X ′∥Rd ]

Theorem

In expectation, we score the true distribution lowest, i.e. :

S(P∗,H) := EY∼P∗ [es(H,Y )] ≥ EY∼P∗ [es(P∗,Y )] := S(P∗,P∗)

48Gneiting, Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, JASA, 2007
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General Idea of Scores

▷ The energy score can be used to score distributional prediction

▷ Assume we have learned a distribution H based on n samples, from

which we can sample (for instance using DRF)

▷ We would like to test this distribution against a new test point y

▷ Can use the Energy score:

es(H, y) = EX∼H [∥X − y∥Rd ]− 1

2
EX ,X ′∼H [∥X − X ′∥Rd ]

▷ If we can sample from H, es(H, y) can be easily approximated!
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Imputation Scores

▷ P refers to the distribution of X with missing values

▷ P∗ ∈ P refers to the distribution of X ∗ without missing values.

▷ H refers to an imputation distribution.

Definition (Proper Imputation Score (I-Score))

A real-valued function SNA(H,P) is a proper I-Score iff

SNA(H,P) ≤ SNA(P
∗,P),

for any imputation distribution H.
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Imputation Scores

▷ For this to work under the challenging MAR setting we need to have a

set of variables Oj that is observed whenever Xj is observed:

Figure 3: Illustration of Oj , for j = 1, 2. For X2, XOj = (X3,X4) in gray, while

for X1, XOj = X4 in black.

S j
NA(H,P) =

EXOj
∼PXOj

|M∈Lj

[
EX∼HXj |XOj

Y∼H∗
Xj |XOj

[∥X − Y ∥2]−
1

2
EX∼HXj |XOj

X ′∼HXj |XOj

[∥X − X ′∥2]
]
, (1)

SNA(H,P) =
1

|S|
∑
j∈S

S j
NA(H,P),
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Figure 4: Illustration of the new scoring method. The PMM view shows that

only certain conditional distributions can be compared under MAR. This is

what we utilize here.

Theorem

Assume there exists j ∈ {1, . . . , d} such that Oj =
⋂

m∈Lj
{l : ml = 0} is

not empty and, for all k such that Ok ̸= ∅, Xk |= Mk | XOk
. Then the

population version Ses
NA(H,P) is a proper I-Score.
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Propriety in Action

Figure 5: Left: Ordering of the I-score, Right: Ordering of the (negative)

energy distance. The latter uses the true underlying values.
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Conclusion on single imputation methods & FCS

▷ Non-parametric PMM view of missing (different environments) helps

understand non-parametric imputation under MAR

▷ Identification result for FCS: the right conditional distributions are

identifiable under MAR with no parametric assumption

▷ Identification under the weakest MAR assumption 49. Beyond MAR. ∀j
∈ {1, . . . , d}, ∀x ∈ X , CIMNAR: P(Mj = 1|x) = P(Mj = 1|x−j)

▷ The quest for an FCS imputation method meeting all 3 points is open

▷ mice-DRF promising (code available) - mice-Engression50

▷ Imputation scores with missing values that are proper under MAR:

ranking imputation methods

▷ Simulations MAR for benchmarks

49Deng et al., (2022) and Fang (2023) showed identifiability for GAN imputation under CIMAR
50Shen & Meinshausen (2024). Engression: extrapolation through the lens of distributional

regression. JRSS B.
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Benchmarking imputation methods

▷ 65 methods (R & Python)

▷ 14 datasets: 100-50000 observations and 3-400 features

▷ 10-30 % NA MCAR, MAR, Standardized energy distance

mnmf

bayesmetab

knn
corknntknn

nlpca

minProb

llsImpute

pemm

zero

miracle

halfmin
mai

mice_gamlss

cmmin

impSeq

vim_pca_robust

miwae

FEFI

remasker

FHDI

impSeqRob

median

meanbcv_svd
gain

softimpute

nipals

vim_pca

sinkhorn

random

SVDImpute

autocomplete

svdeucknn
bpcappcamissmda_em

metabimpute_bpca

hyperimpute_em

vim_knn

sklearn_iterative_post

mice_boot

mice_rf

missforest

metabimpute_rf

amelia

regimpute

mice_midastouch

mice_norm

mice_mixed

mice_norm_nob

mice_norm_predict

mice_drf

sklearn_iterative

irmi

mice_CALIBER

mice_cart

hyperimpute

areg

mice_pmm
mixgb

-2.5

0.0

2.5

5.0

7.5

-10 -5 0 5 10

Dim 1 (58.2 %)

D
im

 2
 (

13
 %

)

mean
ranking

20

40

60

▷ Mice-cart51, aregImpute (close to mice+splines+pmm)52, Hyperimpute (mice

+ model selection RF, XGBoost, Logistic Reg., etc)53, Mice mixed54

51Buuren & Groothuis-O. (2011). Multivariate imputation by chained equations in R. JSS.
52Harrell & Dupont (2018). Hmisc: Harrell miscellaneous. R package version 4.1-1. Stat. Comput.
53Jarrett et al. (2022). Hyperimpute: Generalized iterative imputation with automatic model

selection. ICML.
54Varga (2020). missCompare: Intuitive Missing Data Imputation. R package version 1.0.3. Stat.

Comput.
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Multiple Imputation



Single imputation methods: Danger![
ȳ − qtn−1

σ̂y√
n
; ȳ − qtn−1
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n
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µy = 0

σy = 1

ρ = 0.6

CIµy95%

0.01

0.5

0.30

39.4

0.01

0.72

0.78

61.6

0.01

0.99

0.59

70.8

The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)
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Confidence interval for a mean

Let Y = (Y1, . . . ,Yn)
′ be i.i.d. independent Gaussian random with

expectation µy and variance σ2
y > 0.

▷ The empirical mean Ȳ = n−1
∑n

i=1 Yi

▷ Ȳ ∼ N (µy , σ
2
y/n)

▷ A confidence interval for µ

P
(
Ȳ − σy√

n
Φ−1(1− α/2) ≤ µ ≤ Ȳ +

σy√
n
Φ−1(1− α/2)

)
= 1− α

Variance unknown:
√
n

σ̂y

(
Ȳ − µy

)
∼ T (n − 1)

[
ȳ − σ̂y√

n
qt1−α/2(n − 1) , ȳ +

σ̂y√
n
qt1−α/2(n − 1)

]
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Simulation

1. Generate bivariate Gaussian data (µy = 0, σy = 1, ρ = 0.6)

2. Put missing values on y

3. Imput missing entries

4. Compute the confidence interval of µy - count if the true value

µy = 0 is in the confidence interval

5. Repeat the steps 1-4, 10000 times

⇒ Give the coverage

Code available on Rmistatic.
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Single imputation methods: Danger![
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µy = 0

σy = 1

ρ = 0.6

CIµy95%

0.01

0.5

0.30

39.4

0.01

0.72

0.78

61.6

0.01

0.99

0.59

70.8

The idea of imputation is both seductive and dangerous (Dempster and Rubin, 1983)

⇒ Standard errors of the parameters (σ̂µ̂y ) calculated from the imputed data

set are underestimated 52



Underestimation of variance

Classical confidence interval for µy

[
ȳ − qtn−1

σ̂y√
n
; ȳ − qtn−1

σ̂y√
n

]
Asymptotic variance with MCAR values (Little & Rubin, 2019. p158):

σ̂2
y

nobs

(
1− ρ̂2

n − nobs
nobs

)
=

σ̂2
y

n

(
1 +

n − nobs
nobs

(1− ρ̂2)

)
⇒ When the ρ = 1, we trust the prediction and the coverage given by

stochastic regression is OK.

⇒ Coverage of single imputation is too low: need to take into account

the uncertainty associated to the predictions.
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Single imputation is not enough: Underestimates the variability

⇒ Incomplete Traumabase

X1 X2 X3 ... Y

NA 20 10 ... shock

-6 45 NA ... shock

0 NA 30 ... no shock

NA 32 35 ... shock

-2 NA 12 ... no shock

1 63 40 ... shock

⇒ Completed Traumabase

X1 X2 X3 ... Y

3 20 10 ... shock

-6 45 6 ... shock

0 4 30 ... no shock

-4 32 35 ... shock

-2 75 12 ... no shock

1 63 40 ... shock

A single value can’t reflect the uncertainty of prediction

Multiple impute 1) Generate M plausible values for each missing value

X1 X2 X3 Y

3 20 10 s

-6 45 6 s

0 4 30 no s

-4 32 35 s

-2 75 12 no s

1 63 40 s

X1 X2 X3 Y

-7 20 10 s

-6 45 9 s

0 12 30 no s

13 32 35 s

-2 10 12 no s

1 63 40 s

X1 X2 X3 Y

7 20 10 s

-6 45 12 s

0 -5 30 no s

2 32 35 s

-2 20 12 no s

1 63 40 s
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Single imputation is not enough: Underestimates the variability
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Single imputation is not enough: Underestimates the variability

⇒ Incomplete Traumabase
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0 12 30 no s

13 32 35 s

-2 10 12 no s

1 63 40 s

X1 X2 X3 Y

7 20 10 s

-6 45 12 s

0 -5 30 no s

2 32 35 s

-2 20 12 no s

1 63 40 s

54



Visualization of the imputed values55

X1 X2 X3 Y

3 20 10 s

-6 45 6 s

0 4 30 no s

-4 32 35 s

-2 15 12 no s

1 63 40 s

X1 X2 X3 Y

-7 20 10 s

-6 45 9 s

0 12 30 no s

13 32 35 s

-2 10 12 no s

1 63 40 s

X1 X2 X3 Y

7 20 10 s

-6 45 12 s

0 -5 30 no s

2 32 35 s

-2 20 12 no s

1 63 40 s

−6 −4 −2 0 2 4 6
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Supplementary projection

Dim 1 (71.33%)

D
im

 2
 (

16
.9

4%
)

1
2

3

4

5

6

7
8

910

11

12

library(missMDA)

MIPCA(traumadata)

Projection of the

M imputed data

on a ’compromise’

subspace (PCA with

missing values)

Is it possible to handle 30% of missing values? 50%?, etc. Both % of

missing values & signal matter (5% of NA can be an issue)

55J. et al. Multiple imputation in principal component analysis. ADAC. 2011. 55



Multiple imputation: standard errors are not underestimated

1) Generate M plausible values for each missing value

X1 X2 X3 Y

3 20 10 s

-6 45 6 s

0 4 30 no s

-4 32 35 s

1 63 40 s

-2 15 12 no s

X1 X2 X3 Y

-7 20 10 s

-6 45 9 s

0 12 30 no s

13 32 35 s

1 63 40 s

-2 10 12 no s

X1 X2 X3 Y

7 20 10 s

-6 45 12 s

0 -5 30 no s

2 32 35 s

1 63 40 s

-2 20 12 no s

2) Perform the analysis on each imputed data set: β̂m, V̂ar
(
β̂m

)
3) Combine the results (Rubin’s rules):

β̂ =
1

M

M∑
m=1

β̂m

T =
1

M

M∑
m=1

V̂ar
(
β̂m

)
︸ ︷︷ ︸

Within-imputation variance

+
(
1 + 1

M

) 1

M − 1

M∑
m=1

(
β̂m − β̂

)2
︸ ︷︷ ︸

Between-imputation variance

imp.mice <- mice(traumadata)

lm.mice.out <- with(imp.mice, glm(Y ~ ., family = "binomial"))

⇒ Variability of missing values taken into account. Metric: coverage.
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Multiple imputation: naive attempt

1. Generating M imputed data sets

First idea: several stochastic regression

for m = 1, ...,M, draw ŷi from the predictive N (xi β̂, σ̂
2)

2. Performing the analysis on each imputed data set

3. Combining: variance = within + between imputation variance

M = 1 M = 50

µy = 0 0.01 0.01

σy = 1 0.99 0.99

ρ = 0.6 0.59 0.59

CIµy95% 70.8 81.8

⇒ Variability of the parameters is missing: ”improper” imputation

⇒ Prediction variance = estimation variance plus noise
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Regression: variance of prediction

yn+1 = x ′n+1β + εn+1

ŷn+1 = x ′n+1β̂

β̂ = (X ′X )−1X ′Y

V [ŷn+1 − yn+1] = V [x ′n+1(β̂ − β)− εn+1]

= x ′n+1V (β̂ − β)xn+1 + σ2]

= σ̂2
(
x ′n+1(X

′X )−1xn+1 + 1
)

CI for the prediction[
x ′n+1β̂ +−tn−p(1− α/2)σ̂

√(
x ′n+1(X

′X )−1xn+1 + 1
)]
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Multiple imputation: bivariate case 56

⇒ Proper multiple imputation with yi = xiβ + εi

1. Variability of the parameters, M plausible: (β̂)1, ..., (β̂)M

⇒ Bootstrap
⇒ Posterior distribution: Data Augmentation (Tanner & Wong, 1987)

2. Noise: for m = 1, ...,M, missing values ŷm
i are imputed by drawing

from the predictive distribution N (xi β̂
m, (σ̂2)m)

Improper Proper

CIµy95% 0.818 0.935

56Code available on Rmistatic.
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Multiple imputation

⇒ Aim: provide estimation of the parameters and of their variability

(taken into account the variability due to missing values)

Single imputation: a single value can’t reflect the uncertainty of

prediction ⇒ underestimate the standard errors

1. Generating M imputed data sets: variance of prediction
(F̂ û′)ij (F̂ û′)1ij + ε

1

ij (F̂ û′)2ij + ε
2

ij
(F̂ û′)3ij + ε

3

ij (F̂ û′)Bij + ε
B
ij

”1) Variance of estimation of the parameters + 2) Noise”

2. Performing the analysis on each imputed data set57, 58

3. Combining: variance = within + between imputation variance

β̂ = 1
M

∑M
m=1 β̂m T = 1

M

∑
V̂ar

(
β̂m

)
+
(
1 + 1

M

)
1

M−1

∑(
β̂m − β̂

)2
57The analysis model may be ”in agreement” with the imputation model: congeniality.
58Little & Rubin. 2019. Statistical Analysis with Missing Data, 3rd Edition. Wiley
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Multiple Imputation with joint modeling

⇒ Hypothesis xi ∼ N (µ,Σ)

Algorithm Expectation Maximization Bootstrap:

1. Bootstrap rows: X 1, ... , XM

EM algorithm: (µ̂1, Σ̂1), ... , (µ̂M , Σ̂M)

2. Imputation: x̂mi,miss drawn from N
(
µ̂m
miss|obs , Σ̂

m
miss|obs

)
Easy to parallelized. Implemented in Amelia (website)

Amelia Earhart

James Honaker Gary King Matt Blackwell
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Multiple imputation by chained equations or FCS61

• Impute variables 1 by 1 using all other variables as inputs (round-robin)

• One model/variable: flexible for categorical, ordinal variables

• Cycle through variables: iteratively refine the imputation

1. Initial imputation: mean imputation

2. For a variable j

• (β̂−j , σ̂−j) drawn from a Bootstrap: (β̂−j , σ̂−j)1, ..., (β̂−j , σ̂−j)M

• Imputation of the missing values in variable j with a model of Xj on

the other X−j : stochastic regression imput. ∼ N
(
(xi,−j)

′β̂−j , σ̂−j
)

3. Cycling through variables

⇒ Imputed values are draws from an (implicit) joint distribution

⇒ With continuous variables & regression/variable: gibbs N (µ,Σ) 59, 60

“There is no clear-cut method for determining whether MICE has converged”

Implemented in R package mice & IterativeImputer from scikitlearn (de-

fault iterative ridge regression)

Stef van Buuren
59 Monte Carlo statistical methods (Robert, Casella, 2004) (p344),
60 The EM algorithm and extensions (McLachlan, et al. 1998) (p243)
61 van Buuren. 2018. Flexible Imputation of Missing Data. Second Edition. CRC Press
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Joint versus Conditional modeling

⇒ Imputed values are both seen as draws from a joint distribution

Conditional modeling takes the lead?

▷ Flexible: one model/variable. Easy to deal with interactions and vari-

ables of different nature (binary, ordinal, categorical...)

▷ Many statistical models are conditional models

▷ Tailor to your data - Super powerful in practice

⇒ Drawbacks: one model/variable. Computational costly62

What to do with high correlation or when n < p

▷ JM shrinks the covariance Σ + kI (selection of k?)

▷ CM: ridge regression or predictors selection/variable

Challenges with multiple imputation

▷ MI in high dimension? Theory with small n, large p?

▷ Aggregating lasso regressions? clustering?

62Improvement on mice pmm for large sample size, see mice github repo - still costly for large d
63
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Code Example

https://www.dropbox.com/scl/fo/8euubsr1l5tqhe1ksi8bk/

ABd2NDfV2NR31KY7cLOY7h0?rlkey=2r6cfu614bvqk4hrn0xekxtyn&e=

1&st=bexeahy2&dl=0
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Expectation Maximization



A bit more notation

▷ P∗: the marginal distribution of the complete data variable X , which is

assumed to be absolutely continuous with respect to Lebesgue’s

measure with density p∗.

▷ P∗
X ,M : the joint distribution of (X ∗,M) with joint density p∗X ,M .

▷ PM : the marginal distribution of the mask variable M, such that for

every measurable set A ⊂ {0, 1}d , PM(A) =
∑

m∈A P[M = m].

▷ PM|X : the conditional distribution of the mask variable M given X,

such that for every measurable set A ⊂ {0, 1}d ,
PM|X (A) =

∑
m∈A P(M = m | X ).

▷ P∗
X |M : The conditional distribution of X ∗ given pattern M.

Now in addition we try to model P∗ parametrically with a model

(Pθ)θ/(pθ)θ. If the model is correctly specified then there exists θ∗ such

that

Pθ∗ = P∗, pθ∗ = p∗
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Ignorable missing values mechanism

▷ Let us assume for the next two slide that there is also a parameter ϕ,

such that P(M = m | x) = Pϕ∗(M = m|x).
▷ Then with M(C)AR data, we get for all (θ, ϕ) the observed distribution:

pθ,ϕ(o(x ,m),m) =

∫
pθ(x)Pϕ(M = m|x)doc(x ,m)

=

∫
pθ(x)Pϕ(M = m|o(x ,m))doc(x ,m)

= Pϕ(M = m|o(x ,m))

∫
pθ(x)do

c(x ,m)

= Pϕ(M = m|o(x ,m))pθ(o(x ,m)).
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Ignorable missing values mechanism

▷ Thus the full likelihood problem becomes:

(θfulln , ϕfull
n ) = argmaxθ,ϕ

∑n
i=1

{
log p

(Mi )
θ (o(Xi ,Mi )) + log (Pϕ(M = Mi |o(Xi ,Mi )))

}
▷ The likelihood ignoring the missing value mechanism is:

θML
n = argmax

θ

n∑
i=1

log p
(Mi )
θ (o(Xi ,Mi ))︸ ︷︷ ︸
Lobs (θ)

▷ If the parameter space of (θ, ϕ) is given as the product of the space of

θ and the one of ϕ [=”Parameter Distinctness”]: θfulln = θML
n !!

⇒ This was the main motivation to the practice of doing MLE while

completely ignoring the missingness mechanism!
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KL Divergence

▷ One cannot talking about the MLE without talking about KL

Divergence.

▷ Let P1, P2 have densities p1, p2 with respect to the Lebesgue measure

(though could be any measure dominating the two). Then

KL (P1∥P2) =


∫
log
(

p1(x)
p2(x)

)
p1(x)dx , if P2 ≪ P1

∞, else.
(2)

▷ In fact, it can be shown that the MLE is effectively minimizing the KL

Divergence between the proposed density and the true data

distribution.

68



MLE + Missing Values

Informal variant of Theorems 1 and 2 in Golden et al 201963

Under appropriate regularity conditions (including the existence of the

involved quantities), θML
n is strongly consistent and asymptotically

normal:

θML
n

a.s.−−−−−→
n→+∞

θML
∞ ,

√
n(θML

n − θML
∞ )

L−−−−−→
n→+∞

N
(
0,A−1VA−1

)
,

where

θML
∞ = argmin

θ∈Θ
EM∼PM

[
KL
(
P∗
X |M

(M)∥P(M)
θ

)]
,

A = E(X∗,M)∼P∗
X,M

[
∇2

θ,θ log p
(M)
θML
∞

(
o(X ,M)

)]
,

and

V = E(X ,M)∼P∗
X,M

[
∇θ log p

(M)
θML
∞

(
o(X ,M)

)
· ∇θ log p

(M)
θML
∞

(
o(X ,M)

)T ]
.

63Golden, Henley, White, Kashner. Consequences of Model Misspecification for Maximum

Likelihood Estimation with Missing Data. Econometrics. 2019 69



MLE + Missing Values

▷ Thus, under regularity conditions, θML
n converges a.s. to the best

approximation (in KL terms) to P∗
X |M , averaged over M.

▷ This is true under any missingness mechanism and under

misspecification of the (complete) data distribution Pθ.

▷ Remarkably, it can be shown that if Pθ is correctly specified,

P(M > 0), and MAR holds, θML
∞ = θ∗.

=⇒MLE is consistent under the MAR missingness, even without

the assumption of Parameter Distinctness!

▷ However, this consistency is intimately connected to the KL

Divergence and not true for general M-Estimators.
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Expectation - Maximization (Dempster et al., 1977)

Rationale to get ML estimates: max the observed data likelihood Lobs(θ)

through max of Lcomp(θ). Augment the data to simplify the problem.

E step (conditional expectation):

Q(θ, θℓ) =
n∑

i=1

E[log(pθ(o(Xi ,Mi ), o
c(X ∗

i ,Mi )))︸ ︷︷ ︸
Full Likelihood

| o(Xi ,Mi )]

M step (maximization):

θℓ+1 = argmaxθQ(θ, θℓ)

Result: Lobs(θ)− Lobs(θ
ℓ) ≥ Q(θ, θℓ)− Q(θℓ, θℓ). Thus if

θℓ+1 = argmaxθQ(θ, θℓ), Lobs(θ
ℓ+1) ≥ Lobs(θ

ℓ).
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Income & Age Example

▷ Say X1 is the logarithm of income of a person, X2 is age.

▷ We assume joint normality: (X ∗
1 ,X

∗
2 ) ∼ P∗ = N((µ1, µ2),Σ).

▷ Moreover, we assume that age is always observed, but income can be

missing, leading to two patterns: m1 = (0, 0) and m2 = (1, 0).

▷ Income is missing randomly throughout the population, but there is a

somewhat higher missingness for older people.

▷ In particular, we model this as:

P(X1 missing | X = x) = P(M = m2 | X = x) = (1− ε)α+ ε1{x2 > 50},

for 0 ≤ α < 0.5, 0 ≤ ε < 0.5.

72



Example
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EM Algorithm Example

log(pθ(o(Xi ,Mi ), o
c(X ∗

i ,Mi ))) = log(pµ,Σ(o(Xi ,Mi ), o
c(X ∗

i ,Mi )))

= −1

2
log(det(Σ))− 1

2
(Xi − µ)TΣ−1(Xi − µ)

Thus whenever Mi = m1 = (0, 0):

E [log(pθ(o(Xi ,Mi ), o
c(X ∗

i ,Mi ))) | o(Xi ,Mi )]

= −1

2
log(det(Σ))− 1

2
(Xi − µ)TΣ−1(Xi − µ)

and when Mi = m2 = (1, 0):

E [log(pθ(o(Xi ,Mi ), o
c(X ∗

i ,Mi ))) | o(Xi ,Mi )]

= − 1
2 log(det(Σ))−

1
2E

((Xi,1

X2,2

)
−

(
µ1

µ2

))T (
σ1,1 σ2,1

σ2,1 σ2,2

)−1((
Xi,1

X2,2

)
−

(
µ1

µ2

))
| Xi,2



74



EM Algorithm Example

Thus for all i such that Mi = m2,

E [log(pθ(o(Xi ,Mi ), o
c(X ∗

i ,Mi ))) | o(Xi ,Mi )]

=
σ2,2E[(Xi,1−µ1)

2|Xi,2]−2σ2,1E[(Xi,1−µ1)|Xi,2](Xi,2−µ2)+σ1,1(Xi,2−µ2)
2

σ1,1σ2,2−σ2
2,1

Thus finding Q(θ, θ(ℓ)),

Q(θ, θ(ℓ))

=
∑

i :Mi=m1

E [log(pθ(o(Xi ,Mi ), o
c(X ∗

i ,Mi ))) | o(Xi ,Mi )]

+
∑

i :Mi=m2

E [log(pθ(o(Xi ,Mi ), o
c(X ∗

i ,Mi ))) | o(Xi ,Mi )]

boils down to finding E[(Xi,1 − µ1)
2 | Xi,2], E[(Xi,1 − µ1) | Xi,2].
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Estimation of the mean and covariance matrix

Ex: Hypothesis zi. ∼ N (µ,Σ)

⇒ Point estimates with EM:

> library(norm)

> pre <- prelim.norm(as.matrix(don))

> thetahat <- em.norm(pre)

> getparam.norm(pre,thetahat)

Exercice: EM with bivariate data (2.1.1):

https://rmisstastic.netlify.app/tutorials/josse_bookdown_

lecturenotesmissing_2020

⇒ Variances:

▷ Supplemented EM (Meng, 1991), Louis formulae

▷ Bootstrap approach:

⋄ Bootstrap rows: Z 1, ... , ZB

⋄ EM algorithm: (µ̂1, Σ̂1), ... , (µ̂B , Σ̂B)
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Inference with EM algorithms

Jiang, J. et al. (2019). Logistic Regression with Missing Covariates,

Parameter Estimation, Model Selection and Prediction. CSDA. 2019.

Bogdan, J. et al. (2020). Adaptive Bayesian SLOPE - High dimensional

Model Selection with Missing Values. JCGS.

See slides in Mybox:slidesPhDdefenseJiangLogisticNASlopeNA
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Take home message on inference & imputation

• Methods used in practice are the one implemented in a

sustainable way: few implementations of EM strategies

• ”Imputation is both seductive & dangerous” (Dempster & Rubin, 1983).

Seductive: ”can lull the user into the pleasant state of believing that the data are complete

Dangerous: ”it lumps together situations where the problem is minor enough to be handled in this

way & situations where estimators applied to the imputed data have substantial biases.”

• Matrix completion aims at completing data as best as possible

• Multiple imputation aims at estimating the parameters and their

variability taking into account the uncertainty of the missing values

• Single imputation can be appropriate for point estimates

• Both % of NA & structure matter (5% of NA can be an issue)
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Challenges with heterogeneous sources and missing data

⇒ What to do when you have both MCAR, MAR, MNAR in the data?

⇒ Federated learning with missing values

Clinical Data Biological Data Questionnaire on lifestyle

X1 .... Xp W Y Z1 ..... Zq .... C1 ... Cr
1 NA ....

Obs

Hospital 1
NA NA ...

NA ...

n1 NA NA ...

1 NA NA ... NA NA

Obs

Hospital 2
NA NA NA NA NA NA NA ...

NA NA ... NA NA NA

n2 NA NA ...

... ... ... ... ... ... ... ... ... ... ... ... ... ...

1 NA NA NA ... NA

Obs

Hospital K
NA ... NA

NA .... NA

nK NA .... NA

Sporadic, systematic & missing modalities. Due to the pandemic, many

patients did not complete their tests
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Recap Day 1

• A true missing values mask an underlying values

• Different missing values mechanisms (MCAR, MAR, MNAR) to explain

why values are missing

Inference with missing values aim at estimating parameters (regression

coefficient, causal effects) despite missing values

• Likelihood based methods: ignore the missing values mechanism to do

inference: EM algorithm

• Imputation: mean imputation should be avoided. Look for an

imputation that preserve the joint distribution of the data

• Compare imputation methods with distributional metrics like energy

distance, i-score with missing values

• Multiple imputation to get confidence intervals

• Proper multiple imputation to reflect the variance of prediction of

missing values: variance of the parameters of the imputation model +

noise
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Matrix Completion: PCA

imputation - Low rank

approximation with missing

values



PCA (complete)

Find the subspace that best represents the data

Figure 6: Camel or dromedary?

⇒ Best approximation when projecting the data

⇒ Best representation of the variability

⇒ Do not distort the distances between observations
81



PCA (complete)

Find the subspace that best represents the data

Figure 6: Camel or dromedary? source J.P. Fénelon

⇒ Best approximation when projecting the data

⇒ Best representation of the variability

⇒ Do not distort the distances between observations
81



PCA reconstruction

  -2.00 -2.74
  -1.56 -0.77
  -1.11 -1.59
  -0.67 -1.13
  -0.22 -1.22
   0.22 -0.52
   0.67  1.46
   1.11  0.63
   1.56  1.10
   2.00  1.00

  -2.16 -2.58
  -0.96 -1.35
  -1.15 -1.55
  -0.70 -1.09
  -0.53 -0.92
   0.04 -0.34
   1.24  0.89
   1.05  0.69
   1.50  1.15
   1.67  1.33

X

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

x1

x2

μ̂

⇒ Minimizes distance between observations and their projection

⇒ Approx Xn×p with a low rank matrix S < p ∥A∥22 = tr(AA⊤):

argmin
µ

{
∥X − µ∥22 : rank (µ) ≤ S

}

SVD X : µ̂PCA = Un×SΛ
1
2

S×SV
′

p×S

= Fn×SV
′

p×S

F = UΛ
1
2 PC - scores

V principal axes - loadings
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PCA reconstruction

  -2.00 -2.74
    NA  -0.77
  -1.11 -1.59
  -0.67 -1.13
  -0.22   NA
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1
2
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′

p×S

= Fn×SV
′

p×S

F = UΛ
1
2 PC - scores

V principal axes - loadings
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Missing values in PCA

⇒ PCA: least squares

argmin
µ

{
∥Xn×p − µn×p∥22 : rank (µ) ≤ S

}
⇒ PCA with missing values: weighted least squares

argmin
µ

{
∥Wn×p ⊙ (X − µ)∥22 : rank (µ) ≤ S

}
with Wij = 0 if Xij is missing, Wij = 1 otherwise; ⊙ elementwise

multiplication

Many algorithms: weighted alternating least squares64 ; iterative PCA65.

See also Jan de Leeuw historical notes and NIPALS for 1 dim 66, 67.

64Gabriel, Zamir. 1979. Lower Rank Approximation of Matrices by Least Squares with Any Choize

of Weights. Technometrics.
65Kiers, 1997. Weighted Least Squares Fitting Using Iterative OLS Algorithms. Psychometrika.
66Christofferson. 1969. The one-component model with incomplete data. PhD thesis, Uppsala

University, Institute of statistics.
67Wold and Lyttkens. 1969. Nonlinear iterative partial least squares (nipals) estimation

procedures. Bulletin. Int. Stat.
83
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Iterative PCA

-2 -1 0 1 2 3

-2
-1

0
1

2
3

x1

x2

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5    NA
2.0  1.98
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Iterative PCA

-2 -1 0 1 2 3

-2
-1

0
1

2
3

x1

x2

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5    NA
2.0  1.98

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5  0.00
2.0  1.98

Initialization ℓ = 0: X 0 (mean imputation)
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Iterative PCA
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x1    x2
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-1.5 -1.48
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x1    x2
-1.98 -2.04
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0.15 -0.18
1.00  0.57
2.27  1.67

PCA on the completed data set → (Uℓ,Λℓ,V ℓ);
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Iterative PCA
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Missing values imputed with the fitted matrix µ̂ℓ = UℓΛ1/2ℓV ℓ′
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Iterative PCA
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2.27  1.67

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5  0.57
2.0  1.98

The new imputed dataset is X̂ ℓ = W ⊙ X + (1−W )⊙ µ̂ℓ
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Iterative PCA
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Iterative PCA

x1    x2
-2.0 -2.01
-1.5 -1.48
0.0 -0.01
1.5    NA
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Iterative PCA
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Steps are repeated until convergence
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Iterative PCA

   x1    x2 

 -2.0 -2.01 

 -1.5 -1.48 

  0.0 -0.01 

  1.5    NA 

  2.0  1.98 

   x1    x2 

 -2.0 -2.01 

 -1.5 -1.48 
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  1.5  1.46 

  2.0  1.98 
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-2
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2
 

3
 

x1 

x
2
 

PCA on the completed data set → (Uℓ,Λℓ,V ℓ)

Missing values imputed with the fitted matrix µ̂ℓ = UℓΛ1/2ℓV ℓ′
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Iterative PCA

Iterative PCA/SVD algorithm

1. initialization ℓ = 0: X 0 (mean imputation)

2. step ℓ:

(a) PCA on the completed data → (Uℓ,Λℓ,V ℓ); S dim kept

(b) missing values are imputed with (µ̂S)ℓ = UℓΛ1/2ℓV ℓ′

the new imputed data is X̂ ℓ = W ⊙ X + (1−W )⊙ (µ̂S)ℓ

3. steps of estimation and imputation are repeated 68

⇒ µ̂ from incomplete data: EM algo X = µ+ ε, εij
iid∼N

(
0, σ2

)
with µ of low rank , xij =

∑S
s=1

√
λ̃s ũis ṽjs + εij

⇒ Completed data: good imputation (matrix completion, Netflix)

Reduction of variability (imputation by UΛ1/2V ′)

Selecting S (solution are not nested)? Generalized cross-validation69

68In practice the means and variances are updated at each step to (re)center & (re)scale the data.
69J. & Husson, 2012. Selecting the number of components in PCA using cross-validation

approximations. CSDA.
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Overfitting

Overfitting when:

▷ many parameters (Un×S , VS×p)/ the number of observed values: S

large, many NA

▷ data are very noisy

⇒ ”Trust too much the relationship between variables”

Remarks:

▷ missing values: special case of small data set

▷ iterative PCA: prediction method

Solution:

⇒ Regularization
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Soft thresholding iterative SVD

⇒ Init - estimation - imputation steps:

The imputation step

µ̂PCAij =
S∑

s=1

√
λsuisvjs

is replaced by 70

µ̂Softij =

p∑
s=1

(√
λs − λ

)
+
uisvjs

X = µ+ ε argmin
µ

{
∥W ⊙ (X − µ)∥22 + λ∥µ∥⋆

}
,

with ∥µ∥⋆, the nuclear norm, i.e. the sum of its singular values.

Implemented in softImpute

70T. Hastie, R. Mazumber, 2015, Matrix Completion and Low-Rank SVD via Fast Alternating

Least Squares. JMLR.
87
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Regularized iterative PCA

The imputation step

µ̂PCAij =
S∑

s=1

√
λsuisvjs

is replaced by 71,72, 73 :

µ̂rPCAij =
S∑

s=1

(
λs − σ̂2

λs

)√
λsuisvjs =

S∑
s=1

(√
λs −

σ̂2

√
λs

)
uisvjs

σ2 small → regularized iterative PCA ≈ iterative PCA

σ2 large → mean imputation

σ̂2 =
RSS

df
=

n
∑p

s=S+1 λs

np − p − nS − pS + S2 + S
(Xn×p;Un×S ;Vp×S)

Implemented in missMDA (Youtube link)

71J., Husson. 2012. Handling missing values in exploratory multivariate data analysis. JSFDS.
72Verbank, J., Husson. 2013. Regularised PCA to denoise and visualise data Stat & Computing.
73Rationale: L2+L0 penalty, empirical bayes Efron Moris, 1979, PPCA 88

https://www.youtube.com/playlist?list=PLnZgp6epRBbQzxFnQrcxg09kRt-PA66T_


Properties of SVD based matrix completion

⇒ Powerful methods for matrix completion used in recommandation

systems (ex Netflix prize: 99% missing)

⇒ Very good quality of imputation. Using similarities between

observations and relationship between variables + reduction of dim

Model makes sense 74: Data = structure of rank S + noise

⇒ Different noise regime 75, 76

▷ low noise: iterative PCA (tuning S : CV - GCV)

▷ moderate: iterative regularized PCA (tuning S : CV - GCV, σ)

▷ high noise (SNR low, S large): soft thresholding (tuning λ: CV, σ)

Implemented in denoiseR77

Imputed data should be analysed with caution by other methods

74Udell & Townsend. 2019. Why Are Big Data Matrices Approximately Low Rank? SIAM.
75J. & Sardy. 2015. Adaptive Shrinkage of singular values. Stat & Computing.
76J.& Wager. 2016. Stable Autoencoding: A Flexible Framework for Regularized Low-Rank

Matrix Estimation. JMLR.
77J. Wager, Sardy. 2016: denoiseR: A Package for Low Rank Matrix Estimation.
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Multiple imputation with Bootstrap PCA80

xij = µij + εij =
S∑

s=1

√
λ̃s ũis ṽjs + εij , εij ∼ N (0, σ2)

1. Variability of the parameters, M plausible: (µ̂ij)
1, ..., (µ̂ij)

M 78

2. Noise: for m = 1, ...,M, missing values xmij drawn N (µ̂m
ij , σ̂

2)

Implemented in missMDA (website)

François Husson

Revival with synthetic data generation! Avatar79: good performances in

comparison to synthpop/CT-GAN, etc.
78Parametric bootstrap is used: noise resampled. Non parametric bootstrap implies different

observations for each imputed data set. A trick consists in using tiny weights and not zero weights.
79Guillaudeux et al. (2023). Patient-centric synthetic data generation, no reason to risk

re-identification in biomedical data analysis. NPJ Digit Med.
80J., Pages. Husson. 2011. Multiple imputation in principal component analysis. ADAC. 90

http://math.agrocampus-ouest.fr/infoglueDeliverLive/developpement/missMDA


Comparison of MICE, joint imputation and PCA imputation

⇒ Good estimates of the parameters and their variance from an incomplete

data (coverage close to 0.95)

The variability due to missing values is well taken into account

Amelia & mice can have difficulties with strong correlations or n < p

missMDA does not but requires a tuning parameter: number of dim.

Amelia & missMDA are based on linear relationships

mice is more flexible (one model per variable)

MI based on PCA works in a large range of configuration, n < p, n > p strong

or weak relationships, low or high percentage of missing values
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Simulations

The simulated data N (µ,Σ)

▷ vary number of obs. n, variables p, correlation ρ

▷ vary %NA, missing values mechanism (MCAR, MAR) 0000

0000

0.80.80.80.8

0.80.80.80.8

0.80.80.80.8

0.80.80.80.8

⇒ Multiple imputation M = 100 imputed tables with PCA, Joint Model,

Conditional Model

⇒ Analysis model: estimate θ1 = E [Y ] , θ2 = β1 (regression coefficient)

⇒ Combine with Rubin’s rule: θ̂ = 1
M

∑M
m=1 θ̂m

T = 1
M

∑
m V̂ar

(
θ̂m

)
+ 1

M−1

∑
m

(
θ̂m − θ̂

)2
Assess Bias, CI width & coverage - 1000 simulations 92



Matrix completion for categorical data

Questionnaire data81

region sex age year edu drunk alcohol glasses

Ile de France :8120 F:29776 18_25: 6920 2005:27907 E1:12684 0 :44237 <1/m :12889 0 : 2812

Rhone Alpes :5421 M:23165 26_34: 9401 2010:25034 E2:23521 1-2 : 4952 0 : 6133 0-2:37867

Provence Alpes :4116 35_44:10899 E3:6563 10-19: 839 1-2/m: 7583 10+: 590

Nord Pas de Calais :3819 45_54: 9505 E4:10100 20-29: 212 1-2/w: 9526 3-4: 9401

Pays de Loire :3152 55_64: 9503 NA:73 3-5 : 1908 3-4/w: 6815 5-6: 1795

Bretagne :3038 65_+ : 6713 30+ : 404 5-6/w: 3402 7-9: 391

(Other) :25275 6-9 : 389 7/w : 6593 NA: 85

binge Pbsleep Tabac

<2/m:10323 Never:20605 Frequent : 9176

0 :34345 Often: 10172 Never :39080

1/m : 6018 Rare :22134 Occasional: 4588

1/w : 1800 NA: 30 NA: 97

7/w : 374

NA : 81

• ’true’ missing values: mask an underlying category among the available

categories.

• not a missing values when it is a new category (keep a category NA).

Principal components method to explore categorical data: Multiple

Correpondence Analysis82

81http://www.inpes.sante.fr
82M. Greenacre’s books, MCA and related methods. 2006. Chapman and Hall/CRC.
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Multiple Correspondence Analysis (MCA)

Xn×m m categorical variables coded with dummies in An×Cj , with Cj the tot

number of categories. For a category c, its frequency: pc = nc/n.

y . . . attack

y . . . attack

y . . . attack

n . . . suicide

X =

n . . . accident

n . . . suicide

1 0 . . . 1 0 0

1 0 . . . 1 0 0

1 0 . . . 1 0 0

0 1 . . . 0 1 0

A =

0 1 . . . 0 0 1

0 1 . . . 0 1 0

p1 0
Dp =

.
.
.

0 pJ

MCA: A SVD on weighted matrix: Z = 1√
mn

(A− 1pT )D
−1/2
p = UΛV ′

The principal component (F = UΛ1/2) satisfies:

argmax
F∈Rn

1

m

m∑
j=1

η2(F ,Xj)

η2(F ,Xj) =

∑Cj

c=1 nc(F̄c − F̄ )2∑n
i=1

∑Cj

c=1(Fic − F̄ )2
=

Between variance

Total variance

Benzecri, 1973 :”In data analysis the mathematical problems reduces to computing eigenvectors;

all the science (the art) is in finding the right matrix to diagonalize”
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Regularized iterative MCA83

Iterative MCA algorithm:

1. initialization: imputation of the indicator matrix (proportion)

2. iterate until convergence

(a) estimation: MCA on the completed data → U,Λ,V

(b) imputation with the fitted matrix µ̂ = USΛ
1/2
S V ′

S

(c) column margins are updated

library(missMDA); ?imputeMCA

83J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence

Analysis. Journal of classification.

95



Regularized iterative MCA83

Iterative MCA algorithm:

1. initialization: imputation of the indicator matrix (proportion)

2. iterate until convergence

(a) estimation: MCA on the completed data → U,Λ,V

(b) imputation with the fitted matrix µ̂ = USΛ
1/2
S V ′

S

(c) column margins are updated

library(missMDA); ?imputeMCA

83J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence

Analysis. Journal of classification.

95



Regularized iterative MCA83

Iterative MCA algorithm:

1. initialization: imputation of the indicator matrix (proportion)

2. iterate until convergence

(a) estimation: MCA on the completed data → U,Λ,V

(b) imputation with the fitted matrix µ̂ = USΛ
1/2
S V ′

S

(c) column margins are updated

library(missMDA); ?imputeMCA

83J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence

Analysis. Journal of classification.

95



Regularized iterative MCA83

Iterative MCA algorithm:

1. initialization: imputation of the indicator matrix (proportion)

2. iterate until convergence

(a) estimation: MCA on the completed data → U,Λ,V

(b) imputation with the fitted matrix µ̂ = USΛ
1/2
S V ′

S

(c) column margins are updated

library(missMDA); ?imputeMCA

83J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence

Analysis. Journal of classification.

95



Regularized iterative MCA83

Iterative MCA algorithm:

1. initialization: imputation of the indicator matrix (proportion)

2. iterate until convergence

(a) estimation: MCA on the completed data → U,Λ,V

(b) imputation with the fitted matrix µ̂ = USΛ
1/2
S V ′

S

(c) column margins are updated

library(missMDA); ?imputeMCA

83J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence

Analysis. Journal of classification.

95



Regularized iterative MCA83

Iterative MCA algorithm:

1. initialization: imputation of the indicator matrix (proportion)

2. iterate until convergence

(a) estimation: MCA on the completed data → U,Λ,V

(b) imputation with the fitted matrix µ̂ = USΛ
1/2
S V ′

S

(c) column margins are updated

V1 V2 V3 … V14 V1_a V1_b V1_c V2_e V2_f V3_g V3_h …
ind 1 a NA g … u ind 1 1 0 0 0.71 0.29 1 0 …
ind 2 NA f g u ind 2 0.12 0.29 0.59 0 1 1 0 …
ind 3 a e h v ind 3 1 0 0 1 0 0 1 …
ind 4 a e h v ind 4 1 0 0 1 0 0 1 …
ind 5 b f h u ind 5 0 1 0 0 1 0 1 …
ind 6 c f h u ind 6 0 0 1 0 1 0 1 …
ind 7 c f NA v ind 7 0 0 1 0 1 0.37 0.63 …

… … … … … … … … … … … … … …
ind  1232 c f h v ind 1232 0 0 1 0 1 0 1 …

⇒ the imputed values can be seen as degree of membership

library(missMDA); ?imputeMCA

83J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence

Analysis. Journal of classification.
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Regularized iterative MCA83

Iterative MCA algorithm:

1. initialization: imputation of the indicator matrix (proportion)

2. iterate until convergence

(a) estimation: MCA on the completed data → U,Λ,V

(b) imputation with the fitted matrix µ̂ = USΛ
1/2
S V ′

S

(c) column margins are updated

Two ways to obtain categories: majority or draw

library(missMDA); ?imputeMCA

83J. et al. 2012. Handling Missing Values with Regularized Iterative Multiple Correspondence

Analysis. Journal of classification.
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Multiple imputation with MCA84

1. Variability of the parameters: M sets (Un×S ,ΛS×S ,V
⊤
m×S) using a

non-parametric bootstrap
X̂1 X̂2 X̂M

1 0 . . . 1 0 0

1 0 . . . 1 0 0

1 0 . . .
0.01 0.80 0.19

0.25 0.75
0 0 1

0 1 0 0 1

1 0 . . . 1 0 0

1 0 . . . 1 0 0

1 0 . . .
0.60 0.2 0.20

0.26 0.74
0 0 1

0 1 0 0 1

. . .

1 0 . . . 1 0 0

1 0 . . . 1 0 0

1 0 . . .
0.11 0.74 0.06

0.20 0.80
0 0 1

0 1 0 0 1

2. Categories drawn from multinomial distribution using the values in(
X̂m

)
1≤m≤M

y . . . Attack

y . . . Attack

y . . .
Suicide

n
. . . Accident

n . . . S

y . . . Attack

y . . . Attack

y . . .
Attack

n
. . . Accident

n . . . B

. . .

y . . . Attack

y . . . Attack

y . . .
Suicide

n
. . . Accident

n . . . Suicide

library(missMDA); MIMCA()

84Audigier, Husson, J. MIMCA: Multiple imputation for categorical variables with multiple

correspondence analysis. (2017). Statistics & Computing.
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Multiple imputation for categorical data

Joint modeling

▷ Log-linear model (Schafer, 1997) (cat): pb many levels

▷ Latent class models (Vermunt, 2014) - nonparametric Bayesian (Si & Re-

iter, 2014, Murray & Reiter, 2016) (MixedDataImpute, NPBayesImpute,

NestedCategBayesImpute)

Conditional modeling

▷ logistic, multinomial logit, forests (mice)

⇒ MIMCA provides valid inference (ex. logistic reg with missing) applied

to data of various size (many levels, rare levels)

Time (seconds) Titanic Galetas Income

rows-variables-levels (2000 - 4 - 4) (1000 - 4 -11) (6000 - 14 - 9)

MIMCA 2.750 8.972 58.729

Loglinear 0.740 4.597 NA

Nonparametric bayes 10.854 17.414 143.652

Cond logistic 4.781 38.016 881.188

Cond forests 265.771 112.987 6329.514
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Low-rank matrix completion for count data

• National agency for wildlife and hunting management (ONCFS) data

• Contingency tables: Water (785 wetland sites) - bird (23 species) count data,

from 1990-2016 in 5 countries in North Africa

• Side information (17 variables) on sites & years: meteo, altitude, etc.

⇒ Aims: Assess the effect of time on species abundances

Monitor the population and assess wetlands conservation policies.

⇒ 70% of missing values in contingency tables (drough, war, etc.) 85,86

85 Robin, J., Moulines Sardy. 2019. Low-rank model with covariates for count data with missing

values. Journal of Multivariate Analysis.
86 Robin, Klopp, J., Moulines Tibshirani. Main effects and interactions in mixed and incomplete

data frames. 2019. JASA. 98



Missing values in multi-source heterogeneous data

Clinical Data Biological Data Questionnaire on lifestyle

X1 .... Xp W Y Z1 ..... Zq .... C1 ... Cr
1 NA ....

Obs

Hospital 1
NA NA ...

NA ...

n1 NA NA ...

1 NA NA ... NA NA

Obs

Hospital 2
NA NA NA NA NA NA NA ...

NA NA ... NA NA NA

n2 NA NA ...

... ... ... ... ... ... ... ... ... ... ... ... ... ...

1 NA NA NA ... NA

Obs

Hospital K
NA ... NA

NA .... NA

nK NA .... NA

▷ Mixed data (categorical & continuous): Imputation with Factorial Analysis

for Mixed Data (FAMD)87. Good for rare categories.

▷ Multi-level data (groups of observations): imputation with random effects 88

- imputation with Multilevel SVD 89. Close to meta-learning.

▷ Multi-block/modalities data: imputation with Multiple Factor Analysis90

87Audigier, Husson, J. (2016). A principal components method to impute mixed data. ADAC.
88Audigier et al. (2018). MI for multilevel data with continuous & binary variables. Stat. Science.
89 Husson, J., Narasimhan & Robin. (2019). Imputation of Mixed Data With Multilevel SVD.
90Husson, J. (2013). Handling missing values in MFA. FQP.
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Low rank matrix completion for heterogeneous data

Works of Madeleine Udell:

▷ Mike et al. (2023). The Missing Indicator Method: From Low to High

Dimensions. SIGKDD Conference.

▷ Zhao et al. (2022). Probabilistic Missing Value Imputation for Mixed

Categorical and Ordered Data. NeurIPS.

▷ Zhao and Udell. (2020). Matrix Completion with Quantified

Uncertainty through Low Rank Gaussian Copula. NeurIPS.

▷ Kallus et al. (2018). Causal Inference with Noisy and Missing

Covariates via Matrix Factorization. NeurIPS.

▷ Software: gcimpute: imputation with the Gaussian copula -

LowRankModels: low rank models for missing value imputation.
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Take home message: estimation/imputation with low rank

methods

▷ Principal component methods powerful for single & multiple imputation of

quanti & categorical data (rare categories): dimensionality reduction &

capture similarities between obs and variables.

⇒ Correct inferences for analysis model based on relationships between pairs

of variables

⇒ Requires to choose the number of dimensions S

▷ SVD can be distributed/federated learning

▷ Handling missing values in PCA (quantitative), MCA (categorical), FAMD

(mixed), MFA (groups/blocks), Correspondence analysis for contingency

tables

▷ Preprocessing before clustering - clustering with missing values
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Ressources implementation

Package missMDA:

http://factominer.free.fr/missMDA/index.html

Youtube: https://www.youtube.com/watch?v=OOM8_FH6_8o&list=

PLnZgp6epRBbQzxFnQrcxg09kRt-PA66T_playlist

Article JSS: https://www.jstatsoft.org/article/view/v070i01

MOOC Exploratory Multivariate Data Analysis
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Practice



Incomplete ozone data91

maxO3 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 maxO3v

0601 87 15.6 18.5 18.4 4 4 8 NA -1.7101 -0.6946 84

0602 82 NA 18.4 17.7 5 5 7 NA NA NA 87

0603 92 NA 17.6 19.5 2 5 4 2.9544 1.8794 0.5209 82

0604 114 16.2 NA NA 1 1 0 NA NA NA 92

0605 94 17.4 20.5 NA 8 8 7 -0.5 NA -4.3301 114

0606 80 17.7 NA 18.3 NA NA NA -5.6382 -5 -6 94

0607 NA 16.8 15.6 14.9 7 8 8 -4.3301 -1.8794 -3.7588 80

0610 79 14.9 17.5 18.9 5 5 4 0 -1.0419 -1.3892 NA

0611 101 NA 19.6 21.4 2 4 4 -0.766 NA -2.2981 79

0612 NA 18.3 21.9 22.9 5 6 8 1.2856 -2.2981 -3.9392 101

0613 101 17.3 19.3 20.2 NA NA NA -1.5 -1.5 -0.8682 NA

.
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.

.

0919 NA 14.8 16.3 15.9 7 7 7 -4.3301 -6.0622 -5.1962 42

0920 71 15.5 18 17.4 7 7 6 -3.9392 -3.0642 0 NA

0921 96 NA NA NA 3 3 3 NA NA NA 71

0922 98 NA NA NA 2 2 2 4 5 4.3301 96

0923 92 14.7 17.6 18.2 1 4 6 5.1962 5.1423 3.5 98

0924 NA 13.3 17.7 17.7 NA NA NA -0.9397 -0.766 -0.5 92

0925 84 13.3 17.7 17.8 3 5 6 0 -1 -1.2856 NA

0927 NA 16.2 20.8 22.1 6 5 5 -0.6946 -2 -1.3681 71

0928 99 16.9 23 22.6 NA 4 7 1.5 0.8682 0.8682 NA

0929 NA 16.9 19.8 22.1 6 5 3 -4 -3.7588 -4 99

0930 70 15.7 18.6 20.7 NA NA NA 0 -1.0419 -4 NA

91Code and data availabkle on Rmistastic
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Completed ozone data

maxO3 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 maxO3v

20010601 87.000 15.600 18.500 20.471 4.000 4.000 8.000 0.695 -1.710 -0.695 84.000

20010602 82.000 18.505 20.870 21.799 5.000 5.000 7.000 -4.330 -4.000 -3.000 87.000

20010603 92.000 15.300 17.600 19.500 2.000 3.984 3.812 2.954 1.951 0.521 82.000

20010604 114.000 16.200 19.700 24.693 1.000 1.000 0.000 2.044 0.347 -0.174 92.000

20010605 94.000 18.968 20.500 20.400 5.294 5.272 5.056 -0.500 -2.954 -4.330 114.000

20010606 80.000 17.700 19.800 18.300 6.000 7.020 7.000 -5.638 -5.000 -6.000 94.000

20010607 79.000 16.800 15.600 14.900 7.000 8.000 6.556 -4.330 -1.879 -3.759 80.000

20010610 79.000 14.900 17.500 18.900 5.000 5.000 5.016 0.000 -1.042 -1.389 99.000

20010611 101.000 16.100 19.600 21.400 2.000 4.691 4.000 -0.766 -1.026 -2.298 79.000

20010612 106.000 18.300 22.494 22.900 5.000 4.627 4.495 1.286 -2.298 -3.939 101.000

20010613 101.000 17.300 19.300 20.200 7.000 7.000 3.000 -1.500 -1.500 -0.868 106.000

.....

20010915 69.000 17.100 17.700 17.500 6.000 7.000 8.000 -5.196 -2.736 -1.042 71.000

20010916 71.000 15.400 18.091 16.600 4.000 5.000 5.000 -3.830 0.000 1.389 69.000

20010917 60.000 15.283 18.565 19.556 4.000 5.000 4.000 0.000 3.214 0.000 71.000

20010918 42.000 14.091 14.300 14.900 8.000 7.000 7.000 -2.500 -3.214 -2.500 60.000

20010919 65.000 14.800 16.425 15.900 7.000 7.982 7.000 -4.341 -6.062 -5.196 42.000

20010920 71.000 15.500 18.000 17.400 7.000 7.000 6.000 -3.939 -3.064 0.000 65.000

20010924 76.000 13.300 17.700 17.700 5.631 5.883 5.453 -0.940 -0.766 -0.500 65.139

20010925 75.573 13.300 18.434 17.800 3.000 5.000 5.001 0.000 -1.000 -1.286 76.000

20010927 77.000 16.200 20.800 20.499 5.368 5.495 5.177 -0.695 -2.000 -1.473 71.000

20010928 99.000 18.074 22.169 23.651 3.531 3.610 3.561 1.500 0.868 0.868 93.135

20010929 83.000 19.855 22.663 23.847 5.374 5.000 3.000 -4.000 -3.759 -4.000 99.000

20010930 70.000 15.700 18.600 20.700 7.000 6.405 7.000 -2.584 -1.042 -4.000 83.000

> library(missMDA)

> res.comp <- imputePCA(ozo[, 1:11])

> res.comp$comp
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Visualization of the pattern of missing values
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> library(VIM)

> aggr(don, sortVar = TRUE)
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VVisualization of the pattern of missing values
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> library(VIM)

> matrixplot(don, sortby = 2)

> marginplot(don[ ,c("T9", "maxO3")])
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Visualization with Multiple Correspondence Analysis

⇒ Create the missingness matrix

> mis.ind <- matrix("o", nrow = nrow(don), ncol = ncol(don))

> mis.ind[is.na(don)] = "m"

> dimnames(mis.ind) = dimnames(don)

> mis.ind

maxO3 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 maxO3v

20010601 "o" "o" "o" "m" "o" "o" "o" "o" "o" "o" "o"

20010602 "o" "m" "m" "m" "o" "o" "o" "o" "o" "o" "o"

20010603 "o" "o" "o" "o" "o" "m" "m" "o" "m" "o" "o"

20010604 "o" "o" "o" "m" "o" "o" "o" "m" "o" "o" "o"

20010605 "o" "m" "o" "o" "m" "m" "m" "o" "o" "o" "o"

20010606 "o" "o" "o" "o" "o" "m" "o" "o" "o" "o" "o"

20010607 "o" "o" "o" "o" "o" "o" "m" "o" "o" "o" "o"

20010610 "o" "o" "o" "o" "o" "o" "m" "o" "o" "o" "o"
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Visualization with Multiple Correspondence Analysis
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> library(FactoMineR)

> resMCA <- MCA(mis.ind)

> plot(resMCA, invis = "ind", title = "MCA graph of the categories")
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Imputation with PCA in practice

⇒ Step 1: Estimation of the number of dimensions

> library(missMDA)

> nb <- estim_ncpPCA(don, method.cv = "Kfold")

> nb$ncp #2

> plot(0:5, nb$criterion, xlab = "nb dim", ylab ="MSEP")
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Imputation with PCA in practice

⇒ Step 2: Imputation of the missing values

> res.comp <- imputePCA(don, ncp = 2)

> res.comp$completeObs[1:3, ]

maxO3 T9 T12 T15 Ne9 Ne12 Ne15 Vx9 Vx12 Vx15 maxO3v

0601 87 15.60 18.50 20.47 4 4.00 8.00 0.69 -1.71 -0.69 84

0602 82 18.51 20.88 21.81 5 5.00 7.00 -4.33 -4.00 -3.00 87

0603 92 15.30 17.60 19.50 2 3.98 3.81 2.95 1.97 0.52 82
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Cherry on the cake: PCA on incomplete data!
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Vx15

maxO3v

maxO3

> imp <- cbind.data.frame(res.comp$completeObs, ozo[, 12])

> res.pca <- PCA(imp, quanti.sup = 1, quali.sup = 12)

> plot(res.pca, hab = 12, lab = "quali"); plot(res.pca, choix = "var")

> res.pca$ind$coord #scores (principal components)
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Matrix completion for continuous data

> library(softImpute)

> fit1 <- softImpute(XNA, rank = , lambda = )

> X.soft <- complete(XNA, fit1)

> library(denoiseR)

> adaNA <- imputeada(XNA, gamma = 1) ## time consuming...

> X.ada <- adaNA$completeObs
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Multiple imputation in practice

⇒ Step 1: Generate M imputed data sets

> library(Amelia)

> res.amelia <- amelia(don, m = 100)

> library(mice)

> res.mice <- mice(don, m = 100, defaultMethod = "norm.boot")

> library(missMDA)

> res.MIPCA <- MIPCA(don, ncp = 2, nboot = 100)

> res.MIPCA$res.MI
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Multiple imputation in practice

⇒ Step 2: visualization
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> library(Amelia)

> res.amelia <- amelia(don, m = 100)

> compare.density(res.amelia, var = "T12")

> overimpute(res.amelia, var = "maxO3")

> library(missMDA)

res.over <- Overimpute(res.MIPCA)

function stripplot in mice
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Multiple imputation in practice

⇒ Step 2: visualization

⇒ Individuals position (and variables) with other predictions

Supplementary 
projectionPCA

Regularized iterative PCA

⇒ reference configuration 115
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Multiple imputation in practice

⇒ Step 2: visualization

> res.MIPCA <- MIPCA(don, ncp = 2)

> plot(res.MIPCA, choice = "ind.supp"); plot(res.MIPCA, choice = "var")
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Multiple imputation in practice

⇒ Step 3. Regression on each table and pool the results

β̂ = 1
M

∑M
m=1 β̂m

T = 1
M

∑
m V̂ar

(
β̂m

)
+
(
1 + 1

M

)
1

M−1

∑
m

(
β̂m − β̂

)2
> library(mice)

> res.mice <- mice(don, m = 100)

> imp.micerf <- mice(don, m = 100, defaultMethod = "rf")

> lm.mice.out <- with(res.mice, lm(maxO3 ~ T9+T12+T15+Ne9+...+Vx15+maxO3v))

> pool.mice <- pool(lm.mice.out)

> summary(pool.mice)

est se t df Pr(>|t|) lo 95 hi 95 nmis fmi lambda

(Intercept) 19.31 16.30 1.18 50.48 0.24 -13.43 52.05 NA 0.46 0.44

T9 -0.88 2.25 -0.39 26.43 0.70 -5.50 3.75 37 0.71 0.69

T12 3.29 2.38 1.38 27.54 0.18 -1.59 8.18 33 0.70 0.68

....

Vx15 0.23 1.33 0.17 39.00 0.87 -2.47 2.93 21 0.57 0.55

maxO3v 0.36 0.10 3.65 46.03 0.00 0.16 0.56 12 0.50 0.48
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Categorical imputation with MCA in practice

• 1232 respondents, 14 questions, 35 categories, 9% of missing values

concerning 42% of respondents

In missMDA (Youtube)

data(vnf)

summary(vnf)

MCA(vnf)

#1) select the number of components

nb <- estim_ncpMCA(vnf, ncp.max = 5) #Time-consuming, nb = 4

#2) Impute the indicator matrix

res.impute <- imputeMCA(vnf, ncp = 4)

res.impute$tab.disj

res.impute$comp

summary(res.impute$comp)

# MCA on the incomplete data vnf

res.mca <- MCA(vnf, tab.disj = res.impute$tab.disj)

plot(res.mca, invisible=c("var"))

plot(res.mca,invisible=c("ind"),autoLab="yes", selectMod="cos2 5", cex = 0.6)
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Categorical imputation with MCA in practice

• 1232 respondents, 14 questions, 35 categories, 9% of missing values

concerning 42% of respondents
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Categorical imputation with MCA in practice

• 1232 respondents, 14 questions, 35 categories, 9% of missing values

concerning 42% of respondents
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Regularized iterative MCA: subjects
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Mixed imputation in practice

> library(missMDA)

> res.ncp <- estim_ncpFAMD(ozo)

> res.famd <-imputeFAMD(ozo, ncp = 2)

> res.famd$completeObs

> library(missForest)

> res.rf <- missForest(ozo)

> res.rf$ximp
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Ex of missing values per group of variables: Journal impact

factors

Data from journalmetrics.com

443 journals (Computer Science, Statistics, Probability and

Mathematics),

15 years,

3 types of measures:

▷ IPP - Impact Per Publication: like the ISI impact factor but for 3

(rather than 2) years.

▷ SNIP - Source Normalized Impact Per Paper: Tries to weight by the

number of citations per subject field to adjust for different citation

cultures.

▷ SJR - SCImago Journal Rank: Tries to capture average prestige per

publication.

Many missing values per block of years.
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Multiple Factor Analysis (MFA) with missing values 92
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MFA imputation in practice

> library(denoiseR)

> library(missMDA)

> data(impactfactor)

> year=NULL; for (i in 1: 15) year= c(year, seq(i,45,15))

> res.imp <- imputeMFA(impactfactor, group = rep(3, 15), type = rep("s", 15))

##

> res.mfa <-MFA(res.imp$completeObs, group=rep(3,15), type=rep("s",15),

name.group=paste("year", 1999:2013,sep="_"),graph=F)

plot(res.mfa, choix = "ind", select = "contrib 15", habillage = "group", cex = 0.7)

points(res.mfa$ind$coord[c("Journal of Statistical Software",

"Journal of the American Statistical Association", "Annals of Statistics"),

1:2], col=2, cex=0.6)

text(res.mfa$ind$coord[c("Journal of Statistical Software"), 1],

res.mfa$ind$coord[c("Journal of Statistical Software"), 2],cex=1,

labels=c("Journal of Statistical Software"),pos=3, col=2)

plot.MFA(res.mfa,choix="var", cex=0.5,shadow=TRUE, autoLab = "yes")

plot(res.mfa, select="IEEE/ACM Transactions on Networking",

partial="all",

habillage="group",unselect=0.9,chrono=TRUE)
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Supervised Learning with Missing

values



Collaborators on supervised learning with missing values

• M. Le Morvan, Researcher, INRIA, Paris.

• E. Scornet, Pr. Sorbonne. Topic: random forests, missing, causal.

• G. Varoquaux, Researcher, INRIA, Paris. Topic: machine learning/ Scikitlearn

⇒ Random Forests with missing values

Consistency of supervised learning with missing val. (2019-2024). Stat. papers.

⇒ Linear regression with missing values - MultiLayer perceptron

Linear predictor on linearly-generated data with missing values: non consistency

and solutions. AISTAT2020.

Neumiss networks: differential programming for supervised learning with

missing values. Neurips2020. Oral.

⇒ Impute then regress:

What’s a good imputation to predict with missing val.? Neurips2021. Spotl.
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Prediction with missing values

X̃ = X ⊙ (1−M) + NA⊙M. New feature space is R̃d = (R ∪ {NA})d .

Y =


4.6

7.9

8.3

4.6

 X̃ =


9.1 NA 1

2.1 NA 3

NA 9.6 2

4.2 5.5 6

 X =


9.1 8.5 1

2.1 3.5 3

6.7 9.6 2

4.2 5.5 6

 M =


0 1 0

0 1 0

1 0 0

0 0 0


Find a regression function that minimizes the expected risk

Bayes rule: f ∗ ∈ argmin
f : R̃d→R

E
[(

Y − f (X̃ )
)2]

.

f ∗(X̃ ) = E
[
Y | X̃

]
= E

[
Y | Xobs(M),M

]
=

∑
m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

⇒ One model per pattern m of missing values (2d patterns)93

93Rosenbaum & Rubin. (1984). Reducing Bias in Observational Studies Using Subclassification on

the Propensity Score. JASA.
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Prediction with missing values

X̃ = X ⊙ (1−M) + NA⊙M. New feature space is R̃d = (R ∪ {NA})d .

Y =


4.6

7.9

8.3

4.6

 X̃ =


9.1 NA 1

2.1 NA 3

NA 9.6 2

4.2 5.5 6

 X =


9.1 8.5 1

2.1 3.5 3

6.7 9.6 2

4.2 5.5 6

 M =


0 1 0

0 1 0

1 0 0

0 0 0


Find a regression function that minimizes the expected risk

Bayes rule: f ∗ ∈ argmin
f : R̃d→R

E
[(

Y − f (X̃ )
)2]

.

A learner estimates the regression function from a train set minimizing

the empirical risk: f̂Dn,train ∈ argmin
f : R̃d→R

(
1
n

∑n
i=1 ℓ

(
f (X̃i ),Yi

))
A new data Dn,test to estimate the generalization error rate

• Bayes consistent: E[ℓ(f̂n(X̃ ),Y )] −−−→
n→∞

E[ℓ(f ⋆(X̃ ),Y )]
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Supervised learning with missing values

Differences with classical litterature

Aim: predict an outcome Y (not estimate parameters & their variance)

Specificities: train & test sets with missing values. If not: distributional

shift; data generating process (X ,Y ,M)

⇒ Is it possible to use previous approaches (EM - impute), consistent?

⇒ Do we need to design new ones?

Imputation prior to learning: Impute then Regress

Common practice: use off-the-shelf methods 1) for imputation of

missing values and 2) for supervised-learning on the completed data

▷ Separate imputat. Impute train & test separately (with a different model)

▷ Group imputation/ semi-supervised Impute train & test simultaneously but

the predictive model is learned only on the training imputed data

▷ Imputation train & test with the same model. For instance, compute

the means on the observed data (µ̂1, ..., µ̂d) of each column of the train set

& impute the test set with the same means
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Constant (mean) imputation is consistent for prediction93

Framework - assumptions

▷ Regression model: Y = f ⋆(X ) + ε

f ⋆ : Rd → R a continuous function of the complete data X

ε ∈ R is a centered random noise variable independent of (X ,M1)

X = (X1, . . . ,Xd) has a continuous density g > 0 on [0, 1]d

∥f ⋆∥∞ = supx∈Rd |f ⋆(x)| < ∞

▷ Missing data: MAR on X1 with M1 |= X1|X2, . . . ,Xd

(x2, . . . , xd) 7→ P[M1 = 1|X2 = x2, . . . ,Xd = xd ] is continuous

93J. et al. (2019-2024.). Consistency of supervised learning with missing values. Stat. papers.
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Constant (mean) imputation is consistent for prediction93

• Constant imputation x ′ = (x ′1, x2, . . . , xd): x
′
1 = x11M1=0 + α1M1=1

• Use a universally consistent algorithm (for all distribution) to

approach the regression function f ⋆impute(x
′) = E[Y |X = x ′]

Theorem. (J. et al. 2019)

f ⋆impute(x
′) =E[Y |X2 = x2, . . . ,Xd = xd ,M1 = 1]

1x′
1=α1P[M1=1|X2=x2,...,Xd=xd ]>0

+ E[Y |X = x ′]1x′
1=α1P[M1=1|X2=x2,...,Xd=xd ]=0

+ E[Y |X = x ′,M1 = 0]1x′
1 ̸=α.

Prediction with constant is equal to the Bayes function almost

everywhere

f ⋆impute(X
′) = f ⋆(X̃ ) = E[Y |X̃ ]

Rq: pointwise equality if using a constant out of range.
93J. et al. (2019-2024.). Consistency of supervised learning with missing values. Stat. papers.
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Consistency of constant imputation: Rationale

▷ Specific value, systematic like a code for missing

▷ The learner detects the code and recognizes it at the test time (the imputed

data distribution shouldn’t differ between train and test)

▷ With categorical data, just code ”Missing”

▷ With continuous data, any constant:

out of range

▷ De-identified/imputed missing data: recovers from which pattern it comes

▷ Need a lot of data (asymptotic result) and a universally consistent learner
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Train Test

Imputing both train & test with the same constant and regress is consistent

despite its drawbacks for estimation (useful in practice)
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Consistency of constant imputation: Rationale

▷ Specific value, systematic like a code for missing

▷ The learner detects the code and recognizes it at the test time (the imputed

data distribution shouldn’t differ between train and test)

▷ With categorical data, just code ”Missing”

▷ With continuous data, any constant: out of range

▷ De-identified/imputed missing data: recovers from which pattern it comes

▷ Need a lot of data (asymptotic result) and a universally consistent learner

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

−3 −2 −1 0 1 2 3

−
5

0
5

10

x

y

● ●● ●●●● ● ●●● ●● ●● ●● ●● ●● ● ●●●● ● ● ●●● ● ● ●● ●● ●●● ● ●● ● ●● ●●●● ●● ● ●● ●● ●●● ●● ●●●● ● ●● ● ●●● ● ●● ●● ●●● ● ●●●● ● ●●● ●●● ● ●●● ● ●●● ● ●● ●● ●● ● ●●●● ● ●● ● ●● ●●● ●● ● ●●● ● ●●●● ●● ● ●● ●● ●●● ● ●●● ●● ● ● ●● ●●●● ● ● ●● ●● ● ●● ●● ●●●● ●●● ● ● ● ●● ●● ● ●●● ● ●● ●●● ● ●● ●●● ● ● ●●● ● ●● ●●● ●● ●● ●●● ●● ● ●● ●●● ● ● ●● ●●● ● ●●● ●● ●●● ● ● ●●●● ●● ●● ● ●●● ●●● ●● ●●●●● ●●●●● ●●● ●● ●●● ● ●●● ●● ● ●● ●● ●●● ● ●● ●● ●●● ●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

● ●

●● ●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
5

0
5

10

x

y

● ●●● ●● ● ●● ●● ●●●● ●● ●● ●● ●● ●●● ● ●●● ●●● ●● ●● ●● ● ●● ●●● ●● ●●●● ●● ● ●● ●● ●● ●● ● ●● ● ● ●●●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●● ● ●● ●● ●●●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●●●● ●●●●● ●● ●●● ●● ● ● ●● ● ●●●● ●● ●●

Train Test

Imputing both train & test with the same constant and regress is consistent

despite its drawbacks for estimation (useful in practice)
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CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the

feature j⋆, the threshold z⋆ which minimises the (quadratic) loss

(j⋆, z⋆) ∈ argmin
(j,z)∈S

E
[(
Y − E[Y |Xj ≤ z ]

)2 · 1Xj≤z

+
(
Y − E[Y |Xj > z ]

)2 · 1Xj>z

]
.

X1

X2 root

X1 ≤ 3.3 X1 > 3.3

X2 ≤ 1.5 X2 > 1.5
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CART with missing values

X1 X2 Y

1

2 NA

3 NA

4

root

X1 ≤ s1 X1 > s1

X2 ≤ s2 X2 > s2

1) Select variable and threshold on observed values (1 & 4 for X1)

E
[(

Y − E[Y |Xj ≤ z,Mj = 0]
)2 · 1Xj≤z,Mj=0 +

(
Y − E[Y |Xj > z,Mj = 0]

)2 · 1Xj>z,Mj=0

]
.

2) Propagate observations (2 & 3) with missing values?

• Probabilistic split: Bernoulli( #L
#L+#R ) (Rweeka)

• Block: Send all to a side by minimizing the error (xgboost, lightgbm)

• Surrogate split: Search another variable that gives a close partition (rpart)
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Missing incorporated in attribute (MIA)95

One step: select the variable, the threshold and propagate missing values

1. {X̃j ≤ z or X̃j = NA} vs {X̃j > z}
2. {X̃j ≤ z} vs {X̃j > z or X̃j = NA}
3. {X̃j ̸= NA} vs {X̃j = NA}.

▷ The splitting location z depends on the missing values

▷ Missing values treated like a category (well to handle R ∪ NA)

▷ Good for informative pattern (M explains Y )

Targets one model per pattern:

E
[
Y
∣∣∣X̃] = ∑

m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

▷ Implem94 grf/partykit package, scikit HistGradientBoosting

⇒ Extremely good performances in practice for any mechanism

94implementation trick, J. Tibshirani, duplicate the incomplete columns, and replace

the missing entries once by +∞ and once by −∞
95Twala et al. (2008). Methods for coping with missing data in decision trees. Pattern Recog.
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Bayes optimality of impute-n-regress96

• Imputation function: ∀m ∈ {0, 1}d , let ϕ(m) ∈ C∞: R|obs(m)| → R|mis(m)|

which outputs values for the missing entries based on the observed ones

Φ : R ∪ NA
d → Rd : ∀j ∈ 1, d , Φj(X̃ ) =

Xj ifMj = 0

ϕ
(M)
j (Xobs(M)) ifMj = 1

• Regression on imputed data: g⋆
Φ ∈ argmin

g :Rd 7→R
E
[(

Y − g ◦ Φ(X̃ )
)2]

,

minimizer of the risk on the imputed data

Theorem

Assume that the response Y satisfies Y = f ⋆(X ) + ε

Then, for all missing data mechanisms & almost all imputation functions,

g⋆
Φ ◦ Φ is Bayes optimal

⇒ A universally consistent algorithm trained on the imputed data Φ(X̃ ) is

Bayes consistent

Asymptotically, imputing well is not needed to predict well

96Le Morvan, J. et al. What’s a good imputation to predict with missing values? Neurips2021

(Oral).
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Rationale of proof: imputation creates manifolds

X
1

X2

X 3

linear imputation

X
1

X2

X 3

non linear imputation
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Bayes optimality of impute-n-regress (Le morvan et al. 2021)

Complete data Imputed data (manifolds)

Rationale: Imputation create manifolds to which the learner adapts

1. All data points with a missing data pattern m are mapped to a manifold

M(m) of dimension |obs(m)| (Preimage Theorem)

2. The missing data patterns of imputed data points can almost surely be

de-identified (Thom transversality Theorem)97

3. Given 2), we can build prediction functions, independent of m, that are

Bayes optimal for all missing data patterns
97Non transverse: the manifolds on which the data with either x1 missing or x2 missing are

projected are exactly the same (the same line) 134



Which imputation function should one choose?

Linear problem
(high noise)

Friedman problem
(high noise)

Non-linear problem
(low noise)

103 104 105

Sample size

0.65

0.70

0.75

0.80

E
x
p
la

in
e
d
 v

a
ri

a
n
ce

103 104 105

Sample size

0.60

0.65

0.70

0.75

103 104 105

Sample size

0.96

0.97

0.98

0.99

1.00

Mean imputation Gaussian imputation

MIA

Bayes rate

Block (XGBoost)

Consistency of impute-then-regress. Ex: 3 regression models, 40% of MCAR in

covariates, different imputation methods, then regress with random forests.

• A ”better” imputation could create an easier learning problem

• Constant imputation is consistent but introduces strong discontinuities

⇒ Which imputation and predictor should one use?
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Linear regression with missing values

Linear model:

Y = β0 + ⟨X , β⟩+ ε, X ∈ Rd , ε Gaussian

Bayes predictor for the linear model:

f ⋆(X̃ ) = E[Y |X̃ ] = E[β0 + βTX | M,Xobs(M)]

= β0 + βT
obs(M)Xobs(M) + βT

mis(M) E[Xmis(M) | M,Xobs(M)]

=
∑

m∈{0,1}d

β0 + βT
obs(m)Xobs(m) + βT

mis(m) E[Xmis(m) | M = m,Xobs(m)]

Assumptions on covariates and missing values (X ,M)

1. Gaussian pattern mixture model, PMM: X | (M = m) ∼ N (µm,Σm)

Gaussian assumption X ∼ N (µ,Σ) + MCAR and MAR

3. (Also for Gaussian assumption + MNAR self mask gaussian)

Under Assump. the Bayes predictor is linear per pattern

f ⋆(Xobs ,M) = β0+⟨βobs ,Xobs⟩+⟨βmis , µmis +Σmis,obs(Σobs)
−1(Xobs − µobs)⟩

use of obs instead of obs(M) for lighter notations - Expression for 2.
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Linear model with missing values not necessarily linear98

Example

Let Y = X1 + X2 + ε, where X2 = exp(X1) + ε1. Now, assume that only

X1 is observed. Then, the model can be rewritten as

Y = X1 + exp(X1) + ε+ ε1,

where f (X1) = X1 + exp(X1) is the Bayes predictor. In this example, the

submodel for which only X1 is observed is not linear.

⇒ There exists a large variety of submodels for a same linear model.

Depend on the structure of X and on the missing-value mechanism.

98Le morvan, J. et al. Linear predictor on linearly-generated data with missing values: non

consistency and solutions. AISTAT2020.
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Neumiss Networks to approximate the covariance matrix

Bayes predictor requires inverting many covariance matrices

f ⋆(Xobs ,M) = β0+⟨βobs ,Xobs⟩+⟨βmis , µmis+Σmis,obs(Σobs)
−1(Xobs−µobs)⟩

Order-ℓ approx of (Σ−1
obs(m)) for any m defined recursively:

S
(ℓ)
obs(m) = (Id − Σobs(m))S

(ℓ−1)
obs(m) + Id .

Neuman Series, S (0) = Id , ℓ = ∞: (Σobs(m))
−1 =

∑∞
k=0(Id − Σobs(m))

k

⇒ Neural network architecture to approximate the Bayes predictor

x ⊙ m̄ −

µ ⊙ m̄

S(0) W
(1)
Neu

(Id − Σobs )
+ W

(2)
Neu

(Id − Σobs )
+ W

(3)
Mix

(Σmis,obs )
+

µ ⊙ m

Wβ

β
Y

⊙m̄ ⊙m̄ ⊙m̄ ⊙m

Neumiss iterations Non-linearity

Figure 7: Depth of 3, m̄ = 1−m. Each weight matrix W (k) corresponds to a

simple transformation of the covariance matrix indicated in blue.
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Neumiss Networks to approximate the covariance matrix

Order ℓ approx. of the Bayes predictor)
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Networks with missing values: ⊙M nonlinearity 99

• Implementing a network with the matrix weights W (k) = (I − Σobs(m))

masked differently for each sample can be challenging

• Masked weights is equivalent to masking input & output vector.

Let v a vector, m̄ = 1−m. (W ⊙ m̄m̄⊤)v = (W (v ⊙ m̄))⊙ m̄

Classic network with multiplications by the mask nonlinearities ⊙M

Couple Neumiss and MLP to jointly learn imputation and regression
99 Le morvan, J. et al. Neumiss networks: differential programming for supervised learning with

missing values.Neurips2020 (Oral).
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Benchmark in supervised learning with missing values

• PhD Thesis Hava Chaptoukaev: Simulated data+ Real Data

• Le Morvan, Varoquaux. (2025)100. Reg. models: MLP, Deep Tabular,

XGBoost - Impute: Mean, MICE-Ridge, MissForest, Normal Cond.-Expect.

Good imputations matter less when using the mask101


X1 X2

1 2

3 NA

NA 4


︸ ︷︷ ︸

µ

→


X1 X2 M1 M2

1 2 0 0

3 NA 0 1

NA 4 1 0


︸ ︷︷ ︸

Θ
100Imputation for prediction: beware of diminishing returns. (ICLR 2025 spotlight)
101Mike et al. (2023). The Missing Indicator Method: From Low to High Dimensions. SIGKDD. 140



Benchmark in supervised learning with missing values

• Missing modalities - credit: PhD Thesis Hava Chaptoukaev
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Take home message in supervised learning with missing values

Supervised learning different from inferential aim

Bayes optimality of Impute then Regress

• Single constant imputation is consistent with a powerful learner

• Rethinking imputation: a good imputation is the one that

makes the prediction easy

• Close to conditional imputation but not CI

• Can even work in MNAR

Implicit and jointly learned Impute-then-Regress strategy

• Neumiss network: new architecture ⊙M nonlinearity

• Theoritically: differentiable approximation of the cond. expectation

• Tree-based models: Missing Incorporated in Attribute

MAR/MNAR settings are not tailored for prediction
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Recent literature on supervised learning + resources

• Videos + slides in Mybox: Joint Imputation and Prediction,

Linear+MLP

⇒ Erwan Scornet, Claire Boyer, Aymeric Dieuleveut.102,103,104

• Equivalence between imputing by zero in Linear Regression in high

dimension and ridge regression.

⇒ K. A. Verchand, A. Montanari105

• Mean imputation + regularized logistic regression, in high dimension

setting can reach Bayes risk

102Ayme et al. (2022) Near-optimal rate of consistency for linear models with missing val. ICML
103Ayme et al. (2023) Naive imputation implicitly regularizes high-dimensional linear models. ICML
104Ayme et al. (2024) Random features models to study the success of naive imputation. ICML
105High-dimensional logistic regression with missing data: Imputation, regularization, and

universality
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Distributional learning



Random Forest (RF) of Breimann (2001)

▷ Want to learn the conditional expectation of Y ∈ R given covariates

X ∈ Rp from i.i.d observations (Y1,X1), . . . , (Yn,Xn)

▷ Two steps:

1. Construct a forest with N trees

2. Predict for a test point x
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1. Forest construction

▷ Fit N trees

▷ Each tree splits the Y ′
i s according to some rule depending on the

covariates.

▷ Conventional RF uses the CART criterion, which compares the means

of Y in the two child nodes.

▷ The split is taken where the squared difference in means is maximized.
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2. Prediction

▷ Drop test point x in all trees k = 1, . . . ,N

▷ Let Lk(x) be the leaf where it falls.
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State-of-the-Art performance on Tabular Data
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Distributional Random Forest (DRF)

▷ Let’s say we want to predict at x

▷ RF implicitly also produces weights wi (x), i = 1, . . . , n, indicating the

importance of point i for this prediction:

wi (x) =
1

N

N∑
k=1

1{Xi ∈ Lk(x)}
#Lk(x)

▷ Can write the prediction as

Ê[Y | X = x] =
n∑

i=1

wi (x)Yi .

=⇒ RF is a nearest neighborhood method with a data-adaptive notion of

neighborhood.
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Distributional Random Forest (DRF)

▷ Can use the weights to approximate other things than conditional

expectations

▷ Example: Conditional quantiles106

▷ However, doing this it might make sense to adapt the splitting

criterion!

▷ Generalized Random Forest (GRF)107: Define an estimation target and

adapt the splitting criterion by this target

▷ DRF: Define one splitting criterion that makes sense for many targets.

106Meinshausen. Quantile regression forests. JMLR, 2006
107Athey, Tibshirani, Wager. Generalized random forests. AoS. 2019
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CART

CART criterion:

min
splits

1

nP

(∑
i∈CL

(Yi − Y L)
2 +

∑
i∈CR

(Yi − Y R)
2

)
(3)

is equivalent to

max
splits

nLnR
n2P

(
1

nL

∑
i∈CL

Yi −
1

nR

∑
i∈CR

Yi

)2

. (4)

=⇒ Splits are chosen to make the means in the child nodes as different

as possible.
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Splitting Criteria

▷ RF:
nLnR
n2P

(
ȲL − ȲR

)2
▷ GRF:

nLnR
n2P

(τ̂L − τ̂R)
2

Idea of DRF: Do CART but with means in a Reproducing Kernel Hilbert

space (RKHS)!
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MMD Criterion

Idea of DRF: Do CART but with means in a Reproducing Kernel Hilbert

space (RKHS)!

▷ RKHS H is a Hilbert-space defined by a kernel k : Rd × Rd → R
▷ Any probability measure P can be mapped to H, using the mapping Φ,

where for all P,

Φ(P) = EY∼P [k(Y, ·)] ∈ H

▷ For certain choices of k learning this expectation is akin to learning the

distribution!

▷ This is the idea of DRF: We use CART in H and estimate the

conditional expectation in H.
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MMD Criterion

▷ Let Φ be the function that takes a probability measures and maps it

into H: P 7→ Φ(P) := E[k(Y, ·)]
▷ For the dirac measure Φ(δYi ) = k(Yi , ·):

max
split

nLnR
n2P

∥∥∥∥∥Φ
(

1

|nL|
∑
i∈CL

δYi

)
− Φ

(
1

|nR |
∑
i∈CR

δYi

)∥∥∥∥∥
2

H

=

max
split

nLnR
n2P

∥∥∥∥∥ 1

|nL|
∑
i∈CL

k(Yi , ·)−
1

|nR |
∑
i∈CR

k(Yi , ·)

∥∥∥∥∥
2

H

=⇒ Splits are chosen to make the means in the child nodes as different

as possible, but now in the Hilbert Space.
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DRF Estimator

▷ As a consequence, we get an estimate of the conditional mean

embedding (CME)

µ(x) = Φ(PY|X=x) = E[k(Y, ·) | X = x]

▷ This has the form

µ̂n(x) =
n∑

i=1

wi (x)k(Yi , ·) ∈ H

▷ This can easily be translated back into the empirical distribution:

P̂Y|X=x =
n∑

i=1

wi (x)δYi

▷ Access to P̂Y|X=x is nice because a large range of targets can be

calculated from it!
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DRF Estimator: Summary

▷ i.i.d data (Y1,X1), . . . , (Yn,Xn), Y ∈ Rd and X ∈ Rp

▷ Random Forest (RF) is a powerful tool to estimate Ê[Y | X = x], for

d = 1

▷ Idea of DRF: Use a RF in a Reproducing Kernel Hilbert space (RKHS)

H
▷ Learning the conditional expectation in this space

= Learning a representation of the conditional distribution PY|X=x

▷ Resulting estimate can be conveniently written as

P̂Y|X=x =
n∑

i=1

wi (x)δYi

with weights wi (x), i = 1, . . . , n, indicating the importance of point i

▷ This also works when Y takes values in Rd , for d > 1!
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DRF Results

Theorem

Assume a list of conditions hold. Then there exists σn → 0 such that,

∥µ̂n(x)− µ(x)∥ = Op(σn) (5)

1

σn
(µ̂n(x)− µ(x))

D→ N(0,Σx) (6)

holds.
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Missing incorporated in attribute (MIA)108

One step: select the variable, the threshold and propagate missing values

1. {X̃j ≤ z or X̃j = NA} vs {X̃j > z}
2. {X̃j ≤ z} vs {X̃j > z or X̃j = NA}
3. {X̃j ̸= NA} vs {X̃j = NA}.

▷ The splitting location z depends on the missing values

▷ Missing values treated like a category (well to handle R ∪ NA)

▷ Good for informative pattern (M explains Y )

Targets one model per pattern:

E
[
Y
∣∣∣X̃] = ∑

m∈{0,1}d

E
[
Y |Xobs(m),M = m

]
1M=m

⇒ Extremely good performances in practice for any mechanism

108Twala et al. (2008). Methods for coping with missing data in decision trees. Pattern Recog.
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Missing incorporated in attribute (MIA)109

109Twala et al. (2008). Methods for coping with missing data in decision trees. Pattern Recog.
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DRF & Missing Values

▷ DRF is based on the grf implementation and thus uses the same MIA

implementation trick: duplicate the incomplete columns, and replace

the missing entries once by +∞ and once by −∞ grf/partykit

package, scikit HistGradientBoosting

▷ The good performance as well as theoretical results are likely to extend

to DRF.

▷ This gives a way to obtain distributional prediction for Y when there

are missing values only in X!

▷ This allows for prediction intervals among other things.

▷ Examples:

https:

//1drv.ms/f/s!Ak6nJk4aN-80ndVCJwj8wCy8pDrufw?e=hw3BZk

https://medium.com/data-science/

random-forests-and-missing-values-3daaea103db0
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Other highlights and challenges with missing values

• Graphical models with missing values110, works from R. Nabi, I. Shpitser.

• Weighting - doubly robust methods111; link with semi-supervised learning112

• SGD with MCAR values in linear models, see slides from A. Sportisse;

Conformal Prediction with NA from M. Zaffran

• Researchers: R. Sameworth, T. Cannings, T. Berret, P. Ding, S. Seaman, F.

Li, etc.

⇒ Some challenges

▷ Features importance with missing values

▷ Distributional shifts in the missing values

▷ SGD with NA under MAR and MNAR in logistic regression?113

▷ Times series with MNAR (predict intubation given online monitoring,

features measured each 15 minutes/1 hour + clinical data - DTR

▷ Missing outcome/treatment/covariates?
110Mohan & Pearl. (2021). Graphical Models for Processing Missing Data. JASA
111Robins, Rotnitzky, Zhao. (1994). Estimation of regression coefficients when some regresors are

not always observed. JASA.
112Sportisse et al. (2023). Are labels informative in semi-supervised learning? Estimating and

leveraging the missing-data mechanism. ICML
113Sportisse, J. et al. Debiasing SGD to handle missing values. Neurips2020 160

https://raziehnabi.com/
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Ressources

R-miss-tastic https://rmisstastic.netlify.com/R-miss-tastic

Project funded by the R consortium (Infrastructure Steering Committee)

Aim: a reference platform on the theme of missing data management

▷ list existing packages

▷ available literature

▷ theoretical and practical tutorials

▷ analysis workflows on data (in R and in python)

▷ main actors

▷ popular datasets

⇒ Federate the community

⇒ Contribute!
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Causal inference with missing

values



Personalization of treatment recommendation

Ex: Estimating treatment effect from the Traumabase data

▷ 40000 trauma patients

▷ 300 heterogeneous features from pre-hospital and in-hospital settings

▷ 40 trauma centers, 4000 new patients per year

Center Accident Age Sex Weight Lactacte Blood TXA. Y

Press.

Beaujon fall 54 m 85 NA 180 treated 0

Pitie gun 26 m NA NA 131 untreated 1

Beaujon moto 63 m 80 3.9 145 treated 1

Pitie moto 30 w NA NA 107 untreated 0

HEGP knife 16 m 98 2.5 118 treated 1
...

. . .

⇒ Estimate causal effect (with missing values114): Administration of the

treatment tranexamic acid (TXA), given within 3 hours of the accident, on the

outcome (Y ) 28 days in-hospital mortality for trauma brain patients

114Mayer, I., Wager, S. & J.. (2020). Doubly robust treatment effect estimation with incomplete

confounders. Annals Of Applied Statistics. (implemented in package grf). 162



Causal inference questions in many fields

Assume a policy/intervention/treatment W causes an outcome Y

Aim: estimate the effect as acurately as possible (bias & variance)

▷ What is the effect of hydrochloroquine on mortality?

▷ Is there an effect of financial incentives on teacher performance

(measured by teacher absences & class test scores)? (Duflo et al. 2012)

▷ Effect of reducing car traffic on air pollution

▷ What is the impact of the advertising campaign?

▷ What is the effect of social media on mental health?

▷ Does the students succeeded because of the new teacher?

Had the students remained with the old teacher, they wouldn’t have

succeeded
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Machine Learning VS Causal Inference

Machine learning: Powerful predictive models that rely on correlations.

A central goal is to understand what usually happens in a given situation:

Given today’s weather, what’s the chance tomorrow’s air pollution levels

will be dangerously high?

Causal inference: We want to predict what would happen if we change

the system: How does the answer to the above question change if we

reduce the number of cars on the road?

Concepts of causality are fundamental for having action levers, making

recommendations and answering the questions ”what would happen if”?

Human like AI: reasonable decisions in never experienced situations.

Long tradition in economics and epidemiology, public policies.
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Causal inference115

Causal inference (simplest) question

Assume a policy/intervention/treatment W causes an outcome Y

Aim: estimate the effect as acurately as possible (bias & variance)

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? 200

-6 45 F 0 10 ?

0 15 M 1 ? 150

. . . . . . . . . . . .

-2 52 M 0 100 ?

Average Treatment Effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

The ATE is the difference of the average outcome had everyone gotten treated

and the average outcome had nobody gotten treatment

115Taskview to organize all packages on causal inference.
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Causal inference115

Potential Outcome framework (Neyman, 1923; Rubin, 1974)

▷ n iid sample ( Xi︸︷︷︸
covariates

,

treatment︷︸︸︷
Wi , Yi (1),Yi (0)︸ ︷︷ ︸

potential outcomes

) ∈ Rd × {0, 1} × R× R

▷ Individual causal effect of the binary treatment: ∆i = Yi (1)− Yi (0)

Problem: ∆i never observed (only observe one outcome/indiv)

Covariates Treatment Outcome(s)

X1 X2 X3 W Y(0) Y(1)

1.1 20 F 1 ? 200

-6 45 F 0 10 ?

0 15 M 1 ? 150

. . . . . . . . . . . .

-2 52 M 0 100 ?

Average Treatment Effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

The ATE is the difference of the average outcome had everyone gotten treated

and the average outcome had nobody gotten treatment

115Taskview to organize all packages on causal inference.
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Randomized Controlled Trial

Identifiability assumptions

▷ Yi = WiYi (1) + (1−Wi )Yi (0) (consistency)

▷ Wi ⊥⊥ {Yi (0),Yi (1),Xi} (random treatment assignment)

Flip a coin to assign the treatment

We can check that τ = E[∆i ] = E[Yi (1)]− E[Yi (0)]

= E[Yi (1)|Wi = 1]− E[Yi (0)|Wi = 0]

= E[Yi |Wi = 1]− E[Yi |Wi = 0]

⇒ Although ∆i never observe, τ is identifiable and can be estimated

Difference-in-means estimator

τ̂DM =
1

n1

∑
Wi=1

Yi −
1

n0

∑
Wi=0

Yi , where nw =
n∑

i=1

1Wi=w

τ̂DM unbiased and
√
n-consistent

√
n (τ̂DM − τ)

d−−−→
n→∞

N (0,VDM)
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Data sources and evidence to estimate the treatment effect

Randomized Controlled Trial (RCT)

▷ gold standard (allocation )

▷ same covariate distributions of

treated and control groups

⇒ High internal validity

▷ expensive, long, ethical limitations

▷ small sample size: restrictive

inclusion criteria

⇒ No personalized medicine

▷ trial sample different from the

population eligible for treatment

⇒ Low external validity

Observational data

▷ “big data”: low quality

▷ lack of a controlled design opens the

door to confounding bias

⇒ Low internal validity

▷ low cost

▷ large amounts of data (registries,

biobanks, EHR, claims)

⇒ patient’s heterogeneity

▷ representative of the target

populations

⇒ High external validity
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Observational data: non random assignment

survived deceased Pr(survived | treatment) Pr(deceased | treatment)

TA not administered 6,238 (76%) 1,327 (16%) 0.82 0.18

TA administered 367 (4%) 316 (4%) 0.54 0.46

Mortality rate 20% - for treated 46% - not treated 18%: treatment kills?
Standardized mean differences between treated and control.
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Severe patients (with higher risk of death) are more likely to be treated.

If the control group does not look like the treatment group, the difference in

response may be confounded by the differences between the groups.
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Sample

● Unadjusted

Covariate Balance

Severe patients (with higher risk of death) are more likely to be treated.

Treatment allocation W depends on covariates X , so the covariate

distributions for treatment and control patients are different.
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Assumption for ATE identifiability in observational data

Unconfoundedness

{Yi (0),Yi (1)} ⊥⊥ Wi |Xi

Measure all possible confounders: variables related to both treatment and

outcome

http://www.dagitty.net/ - Obtained by a Delphi method: consensus group technique (do not

ask for the complete graph)

ATE not identifiable without it: it is not a sample size problem
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Correlation versus Causation

credit: Brady Neal
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Correlation versus Causation

credit: Brady Neal

Unobserved confounders make it impossible to separate correlation and

causality.

⇒ Many methods to mitigate this issue: sensitivity analysis, negative

outcome control, instrumental variables, etc.
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Assumption for ATE identifiability in observational data

Unconfoundedness

{Yi (0),Yi (1)} ⊥⊥ Wi |Xi

Measure all possible confounders

Unobserved confounders make it impossible to separate correlation and

causality when correlated to both the outcome and the treatment.

⇒ Many methods to takle this issue: sensitivity analysis, negative

outcome control, instrumental variables, etc.
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Assumption for ATE identifiability in observational data

Overlap

Propensity score: probability of treatment given observed covariates.

e(x) = P(Wi = 1 |Xi = x) ∀ x ∈ X .

We assume overlap, i.e. η < e(x) < 1− η, ∀ x ∈ X and some η > 0
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Regression adjustment

Outcome ∼ covariates: µ(w)(x) = E[Yi (w) |Xi = x ]

OLS model: w ∈ {0, 1} Yi (w) = c(w) + Xiβ(w) + εi (w)

τ = E[∆i ] = E[Yi (1)− Yi (0)]

= E[E[Yi (1)− Yi (0)|Xi ]

= E[E[Yi (1)|Wi = 1,Xi = x ]− E[Yi (0)|Wi = 0, |Xi = x ]](uncounfoud)

= E[E[Yi |Wi = 1,Xi ]− E[Yi |Wi = 0,Xi ]](consistency)

Regression adjustment estimator (plug-in g-formula)

τ̂g = 1
n

∑n
i=1 (µ̂1(Xi )− µ̂0(Xi )) =

1
n

∑n
i=1

(
(ĉ(1) + Xi β̂(1))− (ĉ(0) + Xi β̂(0))

)
⇒ Consistent if µ̂(w) consistent 173



Inverse-propensity weighting estimator

Average treatment effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

Propensity score (proba treated|covariates): e(x) = P(Wi = 1 |Xi = x)

IPW estimator

τ̂IPW =
1

n

n∑
i=1

(
WiYi

ê(Xi )
− (1−Wi )Yi

1− ê(Xi )

)

⇒ Balance the differences between the two groups

⇒ High variance (divide by probability)

⇒ Consistent estimator of τ when ê(·) consistent (logistic regression) 174



Doubly robust estimator

Define µ(w)(x) = E[Yi |Xi = x ,Wi = w ] and e(x) = P(Wi = 1 |Xi = x).

Augmented IPW - Double Robust (DR)

τ̂AIPW = 1
n

∑n
i=1

(
µ̂(1)(Xi )− µ̂(0)(Xi ) +Wi

Yi−µ̂(1)(Xi )

ê(Xi )
− (1−Wi )

Yi−µ̂(0)(Xi )

1−ê(Xi )

)
is consistent if either the µ̂(w)(x) are consistent or ê(x) is consistent.

• τ̂IPW = 1
n

∑n
i=1

(
WiYi

ê(Xi )
− (1−Wi )Yi

1−ê(Xi )

)
: Treatment assignment ∼ covariates

• τ̂OLS = 1
n

∑n
i=1 (µ̂1(Xi )− µ̂0(Xi )): Outcome ∼ covariates

⇒ Both sensitive to misspecification. DR: combine ols + ipw of residuals

Rationale: makes group similar before extrapolation∑
i :Wi=1

(˜̂µ(0)(Xi )− µ(0)(Xi )) = (X 1 − γ̂TX 0)︸ ︷︷ ︸
covariate balancing

(β̂(0) − β(0))︸ ︷︷ ︸
extrapolation

+ noise term

where γ̂ = (1− ê(Xj))
−1
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Doubly robust ATE estimation

Model Treatment on Covariates e(x) = P(Wi = 1 |Xi = x)

Model Outcome on Covariates µ(w)(x) = E[Yi (w) |Xi = x ]

Augmented IPW - Double Robust (DR)

τ̂AIPW = 1
n

∑n
i=1

(
µ̂(1)(Xi )− µ̂(0)(Xi ) +Wi

Yi−µ̂(1)(Xi )

ê(Xi )
− (1−Wi )

Yi−µ̂(0)(Xi )

1−ê(Xi )

)
is consistent if either the µ̂(w)(x) are consistent or ê(x) is consistent

Possibility to use any (machine learning) procedure such as random

forests, deep nets, etc. to estimate ê(x) and µ̂(w)(x) without harming

the interpretability of the causal effect estimation

Properties - Double Machine Learning (chernozhukov, et al. 2018)

If ê(x) and µ̂(w)(x) converge at the rate n1/4 then
√
n (τ̂DR − τ)

d−−−→
n→∞

N (0,V ∗), V ∗ semiparametric efficient variance.

In practice: random forests (+ outcome related variables for precision?)
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Missing attributes alter causal analyses

Coupled causal and missing assumptions

1. Classical unconfoundedness + classical missing values mechanisms116

2. Unconfoundedness with missing + (no) missing values mechanisms117

3. Latent unconfoundedness + MCAR118

• New proposals to handle missing values in causal inference

• Implemented in the grf R package

116Seaman and White. IPW with missing predictors of treatment assignment, Communications in

Statistics, Theory & Methods. 2014.
117Mayer, Wager, J. Doubly robust estimation with incomplete confounders. AOAS. 2020.
118Kallus et al. Causal inf. with noisy & missing covariates via matrix factorization. Neurips. 2018.
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Popular multiple imputation for estimating treatment effect?

X∗
1 X∗

2 X∗
3 ... W Y(0) Y(1)

NA 20 10 ... 1 ? 200

-6 45 NA ... 1 10 ?

0 NA 30 ... 0 ? 150

NA 32 35 ... 0 ? 100

-2 NA 12 ... 0 20 ?

1) Generate M plausible values for each missing value

X1 X2 X3 ... W Y

3 20 10 ... 1 200

-6 45 6 ... 1 10

0 4 30 ... 0 150

-4 32 35 ... 0 100

-2 15 12 ... 0 20

X1 X2 X3 ... W Y

-7 20 10 ... 1 200

-6 45 9 ... 1 10

0 12 30 ... 0 150

13 32 35 ... 0 100

-2 10 12 ... 0 20

X1 X2 X3 ... W Y

7 20 10 ... 1 200

-6 45 12 ... 1 10

0 -5 30 ... 0 150

2 32 35 ... 0 100

-2 20 12 ... 0 20

2) Estimate Average Treatment Effect on each imputed data set with IPW: τ̂m

3) Combine the results (Rubin’s rules): τ̂ = 1
M

∑M
m=1 τ̂m

Consistency of multiple imputation with IPW 119

Assume: MAR P(M = m | X ,Y ,W ) = P(M = m | Xobs(m),Y ,W ),

Classical unconfoundedness {Yi (0),Yi (1)} ⊥⊥ Wi |Xi ,

Propensity Score and model for (X | Y ,W ) correctly specified,

⇒ Multiple imputation (Mice using (X ∗,W ,Y )) with IPW is consistent

119Seaman and White. 2014. IPW with missing predictors of treatment assignment,

Communications in Statistics, Theory & Methods.
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Causal identifiability assumptions adapted to missing values

http://www.dagitty.net/

Covariates Treatment Outcome(s)

X∗
1 X∗

2 X∗
3 W Y(0) Y(1)

NA 20 F 1 ? 200

-6 45 NA 0 10 ?

0 NA M 1 ? 150

NA 32 F 1 ? 100

1 63 M 1 15 ?

-2 NA M 0 20 ?

Unconfoundedness: {Yi (1),Yi (0)} ⊥⊥ Wi |X
⇒ Doctors give us the DAG (do not ask for the complete graph only for

adjustment set), obtained by a Delphi method

Unconfoundedness with missing values: {Yi (1),Yi (0)} ⊥⊥ Wi |X ∗

X ∗ = (1−M)⊙ X +M ⊙NA, Mij = 1 if Xij missing, 0 otherwise; (R ∪ {NA})d

⇒ Doctors decide to treat a patient based on what they observe/record. We

have access to the same information as the doctors 179



AIPW under unconfoundeness with missing values 121

Augmented IPW 120 with missing values

τ̂∗ = 1
n

∑
i

(
µ̂∗
(1)(X

∗
i )− µ̂∗

(0)(X
∗
i ) +Wi

Yi−µ̂∗
(1)

(X∗
i )

ê∗(X∗
i )

− (1−Wi )
Yi−µ̂∗

(0)
(X∗

i )

1−ê∗(X∗
i )

)

Generalized propensity score

e∗(x∗) = P(W = 1 |X ∗ = x∗)

One model per pattern:
∑

m∈{0,1}d E
[
W |Xobs(m),M = m

]
1M=m

In practice: combine two non-parametric estimations (imputation +

forests or forest with MIA)

Properties

τ̂AIPW ∗ is
√
n-consistent, asympt. normal with semi parametric variance

given: E
[(

ê∗(X∗
i )(−i) − e∗(X∗

i ))
)2

] 1
2
× E

[(
µ̂∗
(W ) (X

∗
i )(−i) − µ∗

(W ) (X
∗
i )

)2
] 1

2
= o

(
1√
n

)
120Robins, Rotnitzky, Zhao. (1994). Estimation of regression coefficients when some regressors are

not always observed. JASA.
121Mayer, Wager, J. (2020). Doubly robust treat. effect estim. with incomplete confounders AOAS.
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Methods to do causal inference with missing values

Covariates Missingness Unconfoundedness Models for

(W ,Y )

multiva-

riate

normal

general M(C)AR general Missing Latent Classical
logistic-

linear

non-

param.

1. (SA)EM 122 ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗

1. Mean.GRF ✓ ✓ ✓ (✓) ✓ ✗ ✗ ✓ ✓

1. MIA.GRF ✓ ✓ ✓ (✓) ✓ ✗ ✗ ✓ ✓

2. Mult. Imp. ✓ ✓ ✓ ✗ (✗) ✗ ✓ ✓ (✗)

3. MatrixFact. ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓ (✗)

3. MissDeep-

Causal

✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓

Methods & assumptions on data generating process: models for covariates,

missing values mechanism, identifiability conditions, models for

treatment/outcome.

✓: can be handled ✗: not applicable in theory

(✓): empirical results and ongoing work on theoretical guarantees

(✗): no theoretical guarantees but heuristics.
122Use of EM algorithms for logistic regression with missing values. Jiang, et al. 2019 181



Simulations: no overall best performing method.

• 10 covariates generated with Gaussian mixture model Xi ∼ Nd (µ(ci )
,Σ(ci )

)|Ci = ci ,

C from a multinomial distribution with three categories.

• Unconfoundedness on complete/observed covariates, 30% NA

• Logistic-linear for (W , Y ), logit(e(Xi·)) = αTXi·, Yi ∼ N (βTXi· + τWi , σ
2)

Figure 8: Estimated with AIPW and true ATE τ = 1

Unconf. despite missingness

Complete data unconf.
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→ grf-MIA is asymptotically unbiased under unconfoundedness despite missingness.

→ Multiple imputation requires many imputations to remove bias.
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Simulations: importance of unconfoundedness assumption and

choice of estimator

Setup
▷ Different data generating models (linear, nonlinear, latent, etc.)

▷ Different missingness mechanisms

Results

▷ AIPW estimators outperform their IPW counterparts.

▷ For τ̂mia, the unconfoundedness despite missingness is indeed necessary.

▷ τ̂mia unbiased for all missingness mechanisms, especially for MNAR.

▷ Multiple imputation (mice) only requires standard unconfoundedness, but needs MAR
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ATE estimations: effect of tranexamic acid on in-ICU mortality

• 40 covariates, 18 confounders (categorical and quantitative). 8248 patients

• Multiple imputation assumes MAR & classical unconfoundeness while other

unconfoundeness with missing & (no) assumptions on missing mechanism

x-axis: Estimat. of the ATE (×100), bootstrap CI, y -axis: Methods with logistic regression or

forests for nuisances. Missing values handled with multiple imputation or MIA 123

⇒ Do we need to include outcome related variables to improve precision?

Compromise for final sample size with non parametric methods

123Other estimators (latent confounding, Kallus 2018 or parametric models with EM algorithms

Jiang, J. 2019) are available bur not displayed for clarity (all tend to a slightly detrimental effect)
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