Estimation d'abondances d'espèces à l'aide de modèles log-linéaires

11.12.2018 MAP573 - R pour les statistiques Simon Klotz, Thibault de Rycke, Seongbin Lim, Lucas Elbert

Agenda

- Introduction
- Dataset
- Methods
- Results
- Conclusion

Eurasian Coot [5]

Estimation of Bird Abundance

Important for ecologists

Helps to understand what is causing decline or increase of population

Supports conservation of birds

Estimation of Bird Abundance

Problems

Important for ecologists

Helps to understand what is causing decline or increase of population

Supports conservation of birds

Birds are counted by volunteers

Inaccurate data

Lots of missing values

⇒ Necessary to impute missing values for accurate estimation

Estimation of Bird Abundance

Important for ecologists

Helps to understand what is causing decline or increase of population

Supports conservation of birds

Problems

Birds are counted by volunteers

Inaccurate data

Lots of missing values

⇒ Necessary to impute missing values for accurate estimation

Research Questions

How do methods compare for count imputation?

How do external factors affect bird population?

What does temporal trend of population size show?

Dataset

Contingency table

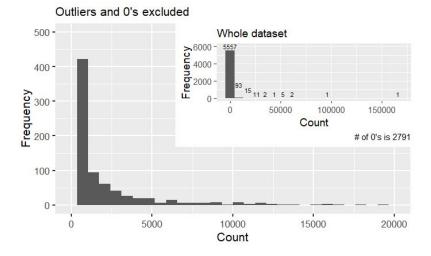
	1990	1991	1992	 2017
Site 6	100	0	n.a.	 500
Site 10	n.a.	n.a.	59	 96

Covariates

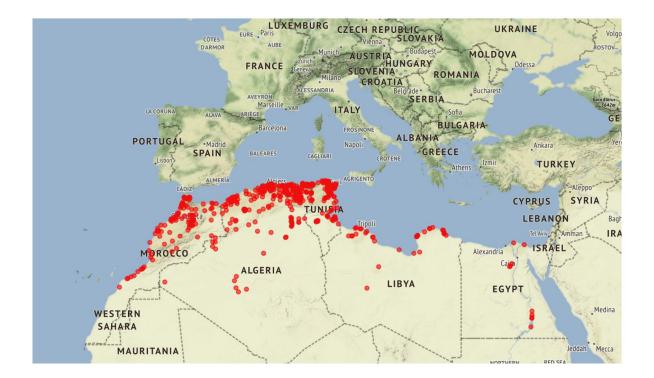
- Covariate that depend on the site e.g.:
 - Longitude and latitude
 - Area
 - Distance to town and coasts
- Covariate that depend on the year
 - Temperature anomalies
- Covariates depending on both e.g.:
 - Rainfall
 - Agricultural indicators

Data availability

Distribution & outliers

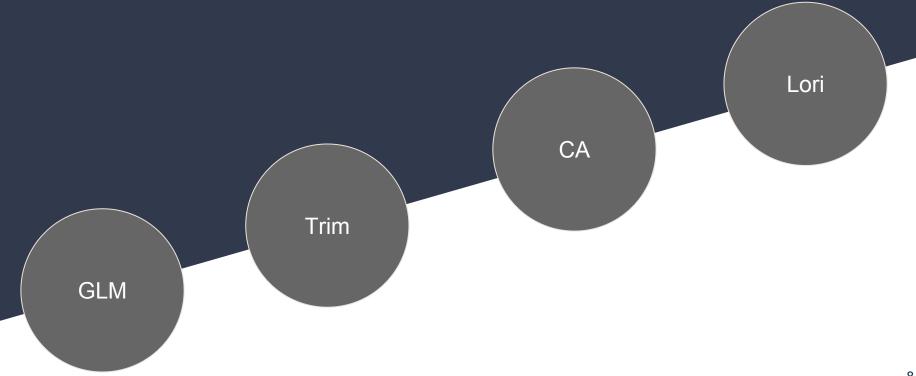


Sites



Map of all sites where Eurasian Coot is observed

Methods



GLM – Generalized Linear Model

Linear model Response Covariates $\mathbb{E}[Y] = X\beta$ $(Y|X) \sim \mathcal{N}(X\beta, \sigma^2 I_n)$

Learnable parameters

GLM – Generalized Linear Model

Generalized linear model Linear model Response Covariates Response Link function $\mathbb{E}[Y] = g^{-1}(X\beta)$ $\mathbb{E}[Y] = X\beta$ $(Y|X) \sim \mathcal{N}(X\beta, \sigma^2 I_n)$ $(Y|X) \sim \mathcal{D}(X,\beta)$ Learnable parameters Covariates Distribution $\Rightarrow \mathcal{D} = \operatorname{Pois}(q^{-1}(X\beta)) \quad q = \ln q$

eta maximizes likelihood

GLM – Generalized Linear Model

- R packages: glm, glmnet
- Example call:
 - Model fitting
 - Predictions

Trim – TRends and Indices for Monitoring data

- Method specifically created to analyze count data from monitoring wildlife
- Produces estimates of annual indices, and trends between these indices

Model 1	Model 2	Model 3	
No time-effect	Linear trend	Effects for each time-point	
$ln(\mu_{ij}) = \alpha_i$	$ln(\mu_{ij}) = \alpha_i + \beta * (j-1)$	$ln(\mu_{ij}) = \alpha_i + \gamma_j$	
With α_i the effect for site i	Implies a constant increase	With γ_j the effect for time j	

- Time parameters: same for each site
- Covariates: create clusters of sites to improve our model

Trim – TRends and Indices for Monitoring data

- Which model to use:
 - Model 1 oversimplifies the problem
 - \circ Model 3 needs one value for each cluster for each year \rightarrow not feasible for our data
 - \Rightarrow Model 2 with clusters
- R package: RTrim
- Application example:

```
cov_trim$cluster = Mclust(delay[,3:6], verbose=FALSE)$classification
result <- trim(cov_trim, count_col = "value", site_col = "site", year_col = "year",
month_col = NULL, covar_cols="cluster", model=2, autodelete=FALSE)</pre>
```

CA – Correspondence Analysis

Expected prob.

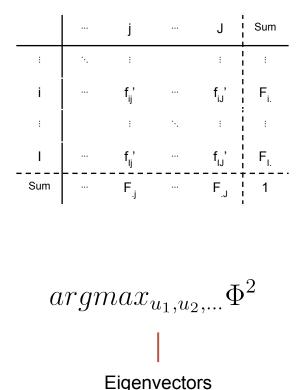
Correlation

- Data with 2 categorical variables
- Derive expected contingency table:
 - Calculate marginal sum Ο

$$\circ \quad f'_{ij} = F_{.i} \cdot F_{j.}$$

Distance

SVD (Singular Value Decomposition)



CA – Correspondence Analysis

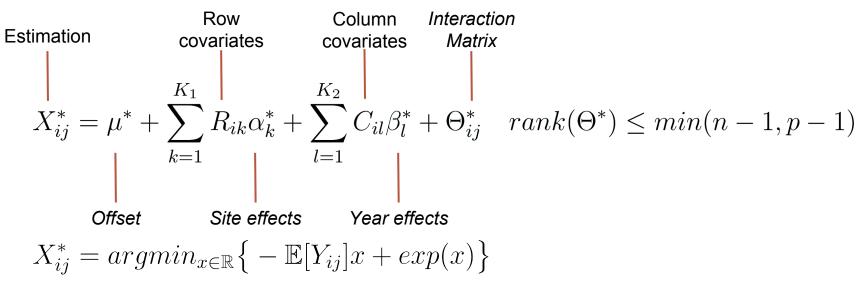
- 2 categorical variables 'Site' & 'Year'
- R package 'missMDA'
- Hyperparameter *ncp*
 - K-Fold cross-validation
 - Better be small

imputeCA(X, ncp = KFold(), threshold = 1e-08, maxiter = 1000)

	1990	1991	1992	 2017
Site 6	100	0	n.a.	 500
Site 10	n.a.	n.a.	59	 96

Lori - Low-Rank Interaction Contingency

- Specifically for imputation of contingency matrices
- Incorporates additional knowledge using covariates



- Regularization:
 - Nuclear norm for interaction matrix
 - L1 norm for site and year effects

Lori – Low–Rank Interaction Contingency

- R package: lori
- Application example:
 - Find regularization parameters by cross validation
 - \circ Predictions

```
reg <- cv.lori(Y, cov=covariates, N=10, thresh=1e-05, maxit=100,
rank.max=5)
```

result <- lori(Y, cov=covariates, lambda1 = reg\$lambda1, lambda2 = reg\$lambda2, reff=TRUE, ceff=TRUE)

Results

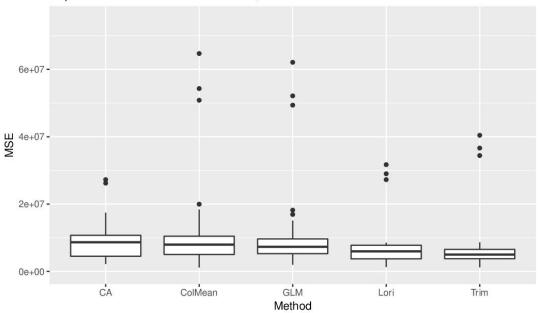
Imputation Quality

- 1. Sample multiple subsets by removing certain percentage of available data
- 2. Fit methods on remaining data
- 3. Predict bird count for removed data
- 4. Calculate error metrics on removed data
- 5. Compare to baseline model

Imputation Quality

- Lori and Trim best performance
- Column mean performs rather good
- Several outliers

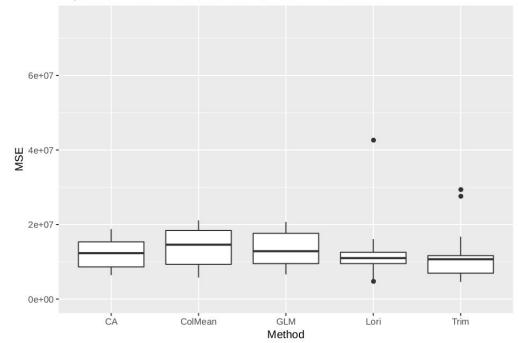
Imputation Error – Removed: 10 %, Total NA: 63.28 %

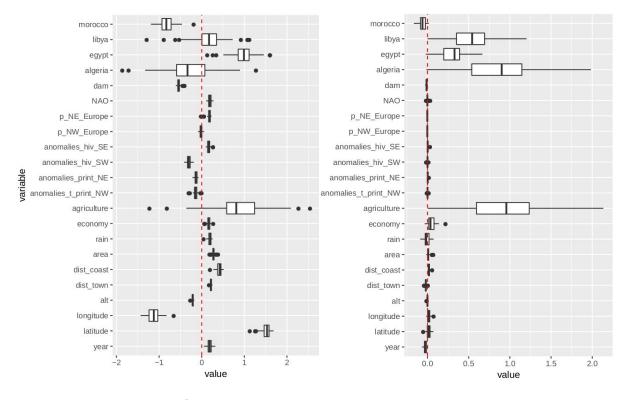


Imputation Quality

- Lori and Trim best performance
- Worse performance than 10% missing data
- GLM has great outliers

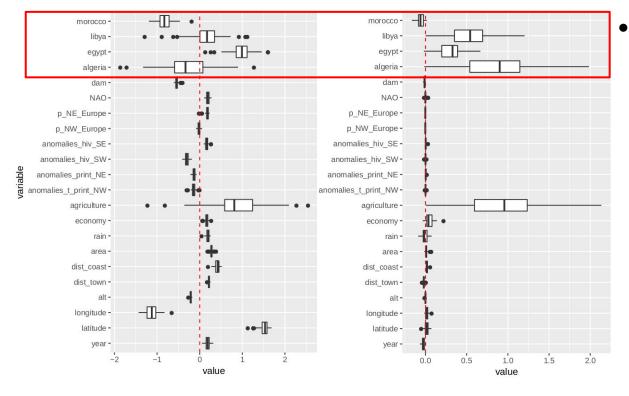
Imputation Error – Removed: 60 %, Total NA: 83.68 %





GLM

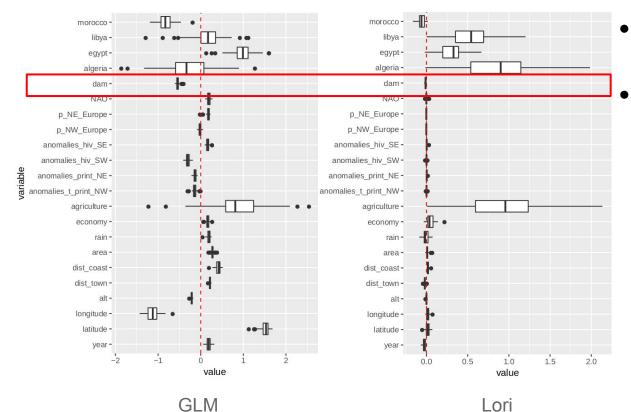
Lori



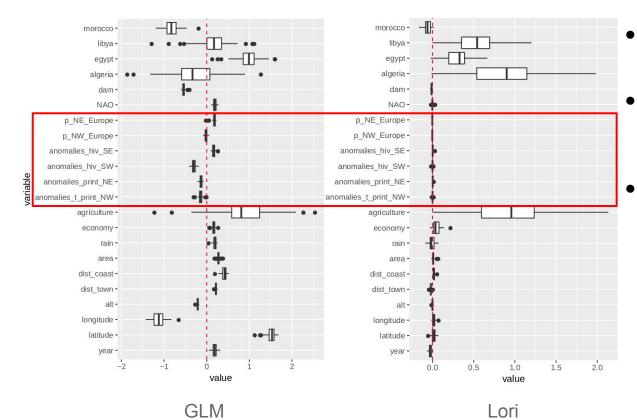
Great influence of country on bird count

GLM

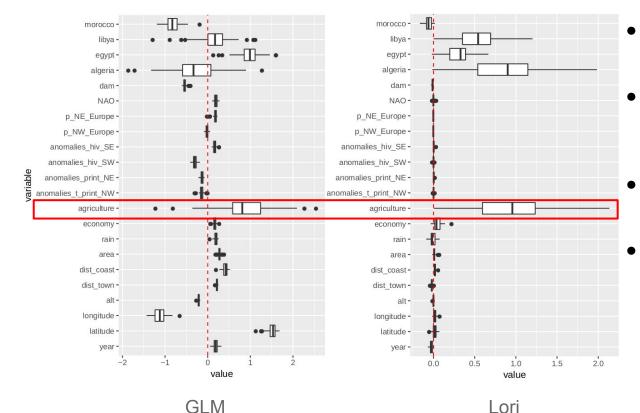
Lori



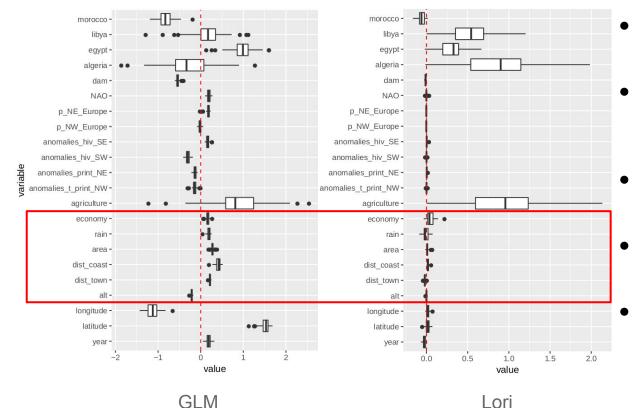
- Great influence of country on bird count
- Negative impact of dam covariate
 - \rightarrow Prefer natural wetlands



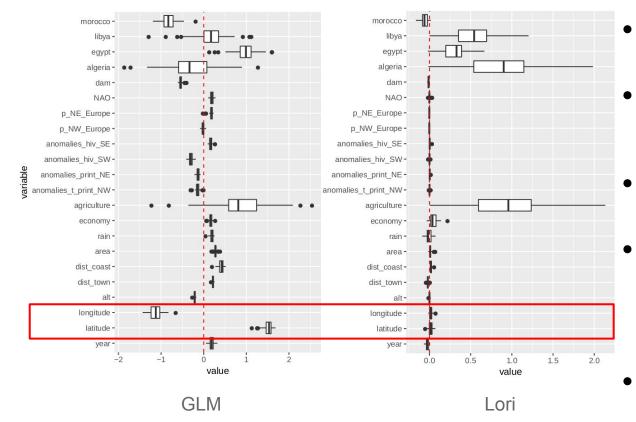
- Great influence of country on bird count
 - Negative impact of dam covariate
 - \rightarrow Prefer natural wetlands
 - Weather anomalies have almost no influence



- Great influence of country on bird count
- Negative impact of dam covariate
 - \rightarrow Prefer natural wetlands
 - Weather anomalies have almost no influence
 - Positive impact of agriculture
 → More food available for birds



- Great influence of country on bird count
- Negative impact of dam covariate
 - \rightarrow Prefer natural wetlands
 - Weather anomalies have almost no influence
 - Positive impact of agriculture \rightarrow More food available for birds
 - Other covariates have small influence

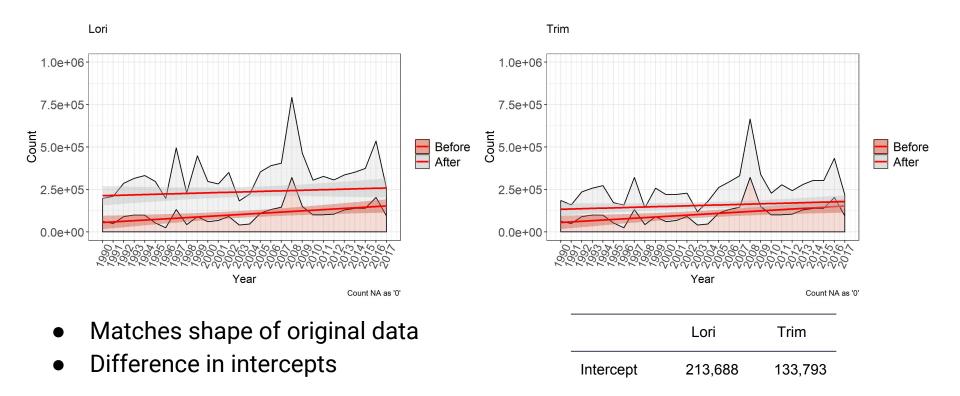


- Great influence of country on bird count
- Negative impact of dam covariate
 - \rightarrow Prefer natural wetlands
- Weather anomalies have almost no influence
- Positive impact of agriculture \rightarrow More food available for birds

Other covariates have small influence

Location has great impact \rightarrow Many possible explanations

Temporal Trend



⇒ Population of Eurasian Coot increasing

1,683

Slope

1,688

Conclusion

Eurasian Coot [6]

- Successfully imputed data better than baseline model
- Lori and Trim obtained best results
- Singled out important covariates which is useful for ecologists
- Determined that population of Eurasian Coot is increasing

References

[1] Nelder, J. A., & Baker, R. J. (2004). Generalized linear models. Encyclopedia of statistical sciences, 4.

[2] Robin, G., Josse, J., Moulines, E., Sardy, S., & Robin, G. E. (2017). Low-rank Interaction Contingency Tables. arXiv preprint arXiv:1703.02296.

[3] Van Strien, A., Pannekoek, J., Hagemeijer, W., & Verstrael, T. (2004). A loglinear Poisson regression method to analyse bird monitoring data. Bird, 482, 33-39.

[4] Yelland, P. M. (2010). An introduction to correspondence analysis. The Mathematica Journal, 12(1), 86-109.

[5] http://www.oiseaux.net/photos/nathalie.santa.maria/foulque.macroule.2.html#espece

[6] http://www.oiseaux.net/photos/nathalie.santa.maria/foulque.macroule.5.html#espece