R-miss-tastic

A resource website on missing values - Methods and references for managing missing data

Package:

missForest

Authors:

Daniel J. Stekhoven

Category:

Single Imputation

Use-Cases:

Single Imputation of continuous and/or categorical data.

Popularity:

CRAN Downloads

Description:

The function ‘missForest’ in this package is used to impute missing values particularly in the case of mixed-type data. It uses a random forest trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data including complex interactions and non-linear relations. It yields an out-of-bag (OOB) imputation error estimate without the need of a test set or elaborate cross-validation. It can be run in parallel to save computation time.

Read more →

Package:

simputation

Authors:

Mark van der Loo [aut, cre]

Category:

Single Imputation, Meta-Package

Use-Cases:

Use imputation algortihms of multiple packages via one interface.

Popularity:

CRAN Downloads

Description:

Easy to use interfaces to a number of imputation methods that fit in the not-a-pipe operator of the ‘magrittr’ package.

Last update:

CRAN Release

Algorithms:
  • impute_cart Decision Tree Imputation
  • impute_const Impute by variable derivation
  • impute_em Multivariate, model-based imputation
  • impute_en (Robust) Linear Regression Imputation
  • impute_hotdeck Hot deck imputation
  • impute_knn Hot deck imputation
  • impute_lm (Robust) Linear Regression Imputation
  • impute_median Impute (group-wise) medians
  • impute_mf Multivariate, model-based imputation
  • impute_multivariate Multivariate, model-based imputation
  • impute_pmm Hot deck imputation
  • impute_proxy Impute by variable derivation
  • impute_rf Decision Tree Imputation
  • impute_rhd Hot deck imputation
  • impute_rlm (Robust) Linear Regression Imputation
  • impute_shd Hot deck imputation
Datasets:

none

Read more →