R-miss-tastic

A resource website on missing values - Methods and references for managing missing data

Package:

simputation

Category:

Single Imputation, Meta-Package

Use-Cases:

Use imputation algortihms of multiple packages via one interface.

Popularity:

CRAN Downloads

Description:

Easy to use interfaces to a number of imputation methods that fit in the not-a-pipe operator of the ‘magrittr’ package.

Last update:

CRAN Release

Algorithms:
  • impute_cart Decision Tree Imputation
  • impute_const Impute by variable derivation
  • impute_em Multivariate, model-based imputation
  • impute_en (Robust) Linear Regression Imputation
  • impute_hotdeck Hot deck imputation
  • impute_knn Hot deck imputation
  • impute_lm (Robust) Linear Regression Imputation
  • impute_median Impute (group-wise) medians
  • impute_mf Multivariate, model-based imputation
  • impute_multivariate Multivariate, model-based imputation
  • impute_pmm Hot deck imputation
  • impute_proxy Impute by variable derivation
  • impute_rf Decision Tree Imputation
  • impute_rhd Hot deck imputation
  • impute_rlm (Robust) Linear Regression Imputation
  • impute_shd Hot deck imputation
Datasets:

none

Further Information:
Input:

data.frame

Example:
library("simputation")

# create dataset with missing data for testing purposes
dat <- iris
dat[1:3,1] <- dat[3:7,2] <- dat[8:10,5] <- NA
print("before imputation")
head(dat,10)

# Impute variables Sepal.Length + Sepal.Width
da5 <- impute_rlm(dat, Sepal.Length + Sepal.Width ~ Petal.Length + Species)
print("after imputation")
head(da5)

Here you can have a interactive look at the example:

https://rdrr.io/snippets/embedding/


Share