R-miss-tastic

A resource website on missing values - Methods and references for managing missing data

Package:

miceDRF

Authors:

Krystyna Grzesiak, Jeffrey Näf

Category:

Multiple Imputation, MICE

Use-Cases:

Imputation, Distributional Random Forest

Popularity:

soon on CRAN

Description:

This package contains miceDRF imputation method and tools for measuring imputation performance.

Algorithms:
  • impute_mice_drf() : mice + Distributional Random Forest imputation
Datasets:

none

Further Information:
Input:

data.frame, matrix

Example:

library(miceDRF)
library(mice)

n <- 200
d <- 5
X <- matrix(runif(n * d), nrow = n, ncol = d)


pmiss <- 0.2

X.NA <- apply(X, 2, function(x) {
  U <- runif(length(x))
  ifelse(U <= pmiss, rep(NA, length(x)), x)
})

imp <- mice(X.NA, m = 1, method = "DRF")
Ximp <- mice::complete(imp)

Share