Ayme, A., C. Boyer, A. Dieuleveut, et al. Near-optimal rate of consistency for linear models with missing values. In: International Conference on Machine Learning. PMLR. 2022, pp. 1211–1243. | 2022 | Paper |
Mohan, K., J. Pearl, and J. Tian. Graphical models for inference with missing data. In: Advances in neural information processing systems 26 (2013). | 2013 | Article |
Mohan, K. and J. Pearl. Graphical models for recovering probabilistic and causal queries from missing data. In: Probabilistic and Causal Inference: the Works of Judea Pearl. 2022, pp. 413–432. | 2022 | Book |
Berrett, T. B. and R. J. Samworth. Optimal nonparametric testing of missing completely at random and its connections to compatibility. In: The Annals of Statistics 51.5 (2023), pp. 2170–2193. | 2023 | Article |
Little, R. J. and D. B. Rubin. Statistical analysis with missing data. John Wiley & Sons, 2019. | 2019 | Book |
Verchand, K. A. and A. Montanari. High-dimensional logistic regression with missing data: Imputation, regularization, and universality. In: arXiv preprint arXiv:2410.01093 (2024). | 2024 | Article |
Ayme, A., C. Boyer, A. Dieuleveut, et al. Random features models: a way to study the success of naive imputation. In: Proceedings of the 41st International Conference on Machine Learning. ICML’24. Vienna, Austria: JMLR.org, 2024. | 2024 | Paper |
Lobo, A. D. R., A. Ayme, C. Boyer, et al. A primer on linear classification with missing data. In: arXiv preprint arXiv:2405.09196 (2024). | 2024 | Article |
Mohan, K. and J. Pearl. Graphical models for processing missing data. In: Journal of the American Statistical Association 116.534 (2021), pp. 1023–1037. | 2021 | Article |
Ayme, A., C. Boyer, A. Dieuleveut, et al. Naive imputation implicitly regularizes high-dimensional linear models. In: International Conference on Machine Learning. PMLR. 2023, pp. 1320–1340. | 2023 | Paper |
Morvan, M. L. and G. Varoquaux. Imputation for prediction: beware of diminishing returns. In: arXiv preprint arXiv:2407.19804 (2024). | 2024 | Article |
Zaffran, M., A. Dieuleveut, J. Josse, et al. Conformal prediction with missing values. In: International Conference on Machine Learning. PMLR. 2023, pp. 40578–40604. | 2023 | Paper |
Molenberghs, G., C. Beunckens, C. Sotto, et al. Every missingness not at random model has a missingness at random counterpart with equal fit. In: Journal of the Royal Statistical Society Series B: Statistical Methodology 70.2 (2008), pp. 371–388. | 2008 | Article |
Näf, J., E. Scornet, and J. Josse. What Is a Good Imputation Under MAR Missingness? In: arXiv preprint arXiv:2403.19196 (2024). | 2024 | Article |
Spohn, M., J. Näf, L. Michel, et al. PKLM: A flexible MCAR test using Classification. In: Psychometrika (2025), pp. 1–24. | 2025 | Article |
Deng, G., C. Han, and D. S. Matteson. Extended missing data imputation via GANs for ranking applications. In: Data Mining and Knowledge Discovery 36.4 (2022), pp. 1498–1520. | 2022 | Article |
Fang, F. and S. Bao. FragmGAN: generative adversarial nets for fragmentary data imputation and prediction. In: Statistical Theory and Related Fields 8.1 (2024), pp. 15–28. | 2024 | Article |
Abayomi, K., A. Gelman, and M. Levy. Diagnostics for multivariate imputations. In: Journal of the Royal Statistical Society, Series C (Applied Statistics) 57.3 (2008), pp. 273-291. | 2008 | Article |
Albert, P. S. and D. A. Follmann. Modeling repeated count data subject to informative dropout. In: Biometrics 56.3 (2000), pp. 667-677. | 2000 | Article |
Allison, P. D. Missing Data. Quantitative Applications in the Social Sciences. Thousand Oaks, CA, USA: Sage Publications, 2001. ISBN: 9780761916727. | 2001 | Book |
Andridge, R. and R. J. A. Little. A review of hot deck imputation for survey non-response. In: International Statistical Review 78.1 (2010), pp. 40-64. | 2010 | Article |
Audigier, V., F. Husson, and J. Josse. A principal component method to impute missing values for mixed data. In: Advances in Data Analysis and Classification 10.1 (2016), pp. 5-26. | 2016 | Article |
Audigier, V., F. Husson, and J. Josse. Multiple imputation for continuous variables using a Bayesian principal component analysis. In: Journal of Statistical Computation and Simulation 86.11 (2015), pp. 2140-2156. | 2015 | Article |
Audigier, V., F. Husson, and J. Josse. MIMCA: multiple imputation for categorical variables with multiple correspondence analysis. In: Statistics and Computing 27.2 (2016), pp. 1-18. eprint: 1505.08116. | 2016 | Article |
Bang, H. and J. M. Robins. Doubly robust estimation in missing data and causal inference models. In: Biometrics 61.4 (2005), pp. 962-973. | 2005 | Article |
Baraldi, A. N. and C. K. Enders. An introduction to modern missing data analysis. In: Journal of School Psychology 48.1 (2010), pp. 5-37. | 2010 | Article |
Baretta, L. and A. Santaniello. Nearest neighbor imputation algorithms: a critical evaluation. In: BMC Medical Informatics and Decision Making. Proceedings of the 5th Translational Bioinformatics Conference (TBC 2015): medical informatics and decision making 16.Supp. 3 (2016), p. 74. | 2016 | Article |
Bartlett, J. W., O. Harel, and J. R. Carpenter. Asymptotically unbiased estimation of exposure odds ratios in complete records logistic regression. In: American journal of epidemiology 182.8 (2015), pp. 730–736. | 2015 | Article |
Beaulac, C. and J. S. Rosenthal. BEST: A decision tree algorithm that handles missing values. In: arXiv preprint (2018). eprint: 1804.10168. | 2018 | Article |
Bengio, Y. and F. Gingras. Recurrent neural networks for missing or asynchronous data. In: Proceedings of the 8th International Conference on Neural Information Processing Systems. (Nov. 27, 1995-Dec. 02, 1995). Ed. by -. Cambridge, MA, USA: MIT Press, 1995, pp. 395-401. | 1995 | Paper |
Bertsimas, D., C. Pawlowski, and Y. D. Zhuo. From predictive methods to missing data imputation: an optimization approach. In: The Journal of Machine Learning Research 18.1 (2017), pp. 7133–7171. | 2017 | Article |
Beunckens, C., G. Molenberghs, G. Verbeke, et al. A latent-class mixture model for incomplete longitudinal Gaussian data. In: Biometrics 64.1 (2008), pp. 96–105. | 2008 | Article |
Bianchi, F. M., L. Livi, K. Ø. Mikalsen, et al. Learning representations of multivariate time series with missing data. In: Pattern Recognition 96 (2019), p. 106973. | 2019 | Article |
Biessmann, F., D. Salinas, S. Schelter, et al. Deep" Learning for Missing Value Imputation in Tables with Non-Numerical Data. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Ed. by -. CIKM ’18. Torino, Italy: ACM, 2018, pp. 2017–2025. ISBN: 978-1-4503-6014-2. | 2018 | Paper |
Blake, H. A., C. Leyrat, K. Mansfield, et al. Propensity scores using missingness pattern information: a practical guide. In: arXiv preprint (2019). arXiv: 1901.03981 [stat.ME]. | 2019 | Article |
Brinis, S., C. Traina, and A. J. Traina. Hollow-tree: a metric access method for data with missing values. In: Journal of Intelligent Information Systems (2019), pp. 1–28. | 2019 | Article |
Buck, S. F. A method of estimation of missing values in multivariate data suitable for use with an electronic computer. In: Journal of the Royal Statistical Society, Series B 22 (1960), pp. 302-306. | 1960 | Article |
Burns, R. M. Multiple and replicate item imputation in a complex sample survey. In: Proceedings of the 6th Annual Research Conference. Ed. by B. of the Census. Washington DC, USA, 1990, pp. 655-665. | 1990 | Paper |
Candès, E. J., C. A. Sing-Long, and J. D. Trzasko. Unbiased risk estimates for singular value thresholding and spectral estimators. In: IEEE Transactions on Signal Processing 61.19 (2013), pp. 4643-4657. | 2013 | Article |
Carpenter, J. R., M. G. Kenward, and S. Vansteelandt. A comparison of multiple imputation and doubly robust estimation for analyses with missing data. In: Journal of the Royal Statistical Society: Series A (Statistics in Society) 169.3 (2006), pp. 571–584. | 2006 | Article |
Carpenter, J. and M. Kenward. Multiple Imputation and its Application. Chichester, West Sussex, UK: Wiley, 2013. ISBN: 9780470740521. | 2013 | Book |
Chen, T. and C. Guestrin. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (Aug. 13, 2016-Aug. 17, 2016). Ed. by -. New York, NY, USA: ACM, 2016, pp. 785-794. ISBN: 0450342322. | 2016 | Paper |
Chen, Y. and M. Sadinle. Nonparametric Pattern-Mixture Models for Inference with Missing Data. In: arXiv preprint (2019). arXiv: 1904.11085 [stat.ME]. | 2019 | Article |
Chen, J. and J. Shao. Nearest neighbor imputation for survey data. In: Journal of Official Statistics 16.2 (2000), pp. 113-131. | 2000 | Article |
Collins, L. M., J. L. Schafer, and K. Chi-Ming. A comparison of inclusive and restrictive strategies in modern missing data procedures. In: Psychological Methods 6.4 (2007), pp. 330-351. | 2007 | Article |
Cranmer, S. J. and J. Gill. We have to be discrete about this: a non-parametric imputation technique for missing categorical data. In: British Journal of Political Science 43 (2012), pp. 425-449. | 2012 | Article |
Crookston, N. L. and A. O. Finley. yaImpute: an R package for kNN imputation. In: Journal of Statistical Software 23 (2008), p. 10. | 2008 | Article |
Dax, A. Imputing Missing Entries of a Data Matrix: A review. In: Journal of Advanced Computing 3.3 (2014), pp. 98-222. | 2014 | Article |
Dempster, A. P., N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. In: Journal of the Royal Statistical Society, Series B (Methodological) 39.1 (1977), pp. 1-38. | 1977 | Article |
Diggle, P. and M. G. Kenward. Informative drop-out in longitudinal data analysis. In: Journal of the Royal Statistical Society, Series C (Applied Statistics) 43.1 (1994), pp. 49-93. | 1994 | Article |
Ding, P. and F. Li. Causal Inference: A Missing Data Perspective. In: Statistical Science 33.2 (2018), pp. 214–237. | 2018 | Article |
Ding, Y. and J. S. Simonoff. An investigation of missing data methods for classification trees applied to binary response data. In: Journal of Machine Learning Research 11.1 (2010), pp. 131-170. | 2010 | Article |
Dong, Y. and C. J. Peng. Principled missing data methods for researchers. In: SpringerPlus 2 (2013), p. 222. | 2013 | Article |
Enders, C. K. Applied Missing Data Analysis. Guilford Press, 2010, p. 401. ISBN: 9781606236390. | 2010 | Book |
Enders, C. K. A primer on maximum likelihood algorithms available for use with missing data. In: Structural Equation Modeling 8.1 (2001), pp. 128-141. | 2001 | Article |
Erler, N. S., D. Rizopoulos, and E. M. Lesaffre. JointAI: joint analysis and imputation of incomplete data in R. In: arXiv preprint (2019). | 2019 | Article |
Hunt, L. and M. Jorgensen. Mixture model clustering for mixed data with missing information. In: Computational Statistics & Data Analysis 41.3-4 (2003), pp. 429–440. | 2003 | Article |
Jiang, W., M. Bogdan, J. Josse, et al. Adaptive Bayesian SLOPE–High-dimensional Model Selection with Missing Values. In: arXiv preprint (2019). | 2019 | Article |
Chi, J. T., E. C. Chi, and R. G. Baraniuk. k-pod: A method for k-means clustering of missing data. In: The American Statistician 70.1 (2016), pp. 91–99. | 2016 | Article |
Fang, F., J. Zhao, and J. Shao. Imputation-based adjusted score equations in generalized linear models with nonignorable missing covariate values. In: Statistica Sinica 28.4 (2018), pp. 1677–1701. | 2018 | Article |
Fay, R. E. Alternative paradigms for the analysis of imputed survey data. In: Journal of the American Statistical Association 91.434 (1996), pp. 490-498. | 1996 | Article |
Fellegi, I. P. and D. Holt. A systematic approach to automatic edit and imputation. In: Journal of the American Statistical Association 71.353 (1976), pp. 17-35. | 1976 | Article |
Ferrari, P. A., P. Annoni, A. Barbiero, et al. An imputation method for categorical variables with application to nonlinear principal component analysis. In: Computational Statistics & Data Analysis 55.7 (2011), pp. 2410-2420. | 2011 | Article |
Finkbeiner, C. Estimation for the multiple factor model when data are missing. In: Psychometrika 44.4 (1979), pp. 409-420. | 1979 | Article |
Fitzmaurice, G. M., G. Molenberghs, and S. R. Lipsitz. Regression Models for Longitudinal Binary Responses with Informative Drop-Outs. In: Journal of the Royal Statistical Society. Series B (Methodological) 57.4 (1995), pp. 691–704. | 1995 | Article |
Follmann, D. and M. Wu. An approximate generalized linear model with random effects for informative missing data. In: Biometrics 51.1 (1995), pp. 151-168. | 1995 | Article |
Gad, A. M. and N. M. M. Darwish. A shared parameter model for longitudinal data with missing values. In: American Journal of Applied Mathematics and Statistics 1.2 (2013), pp. 30-35. | 2013 | Article |
Gelman, A., G. King, and C. Liu. Not asked and not answered: Multiple imputation for multiple surveys. In: Journal of the American Statistical Association 93.443 (1998), pp. 846–857. | 1998 | Article |
Gelman, A., I. van Mechelen, G. Verbeke, et al. Multiple Imputation for Model Checking: Completed-Data Plots with Missing and Latent Data. In: Biometrics 61.1 (2005), pp. 74–85. | 2005 | Article |
Gill, R. D., M. J. Van Der Laan, and J. M. Robins. Coarsening at random: Characterizations, conjectures, counter-examples. In: Proceedings of the First Seattle Symposium in Biostatistics. Springer. 1997, pp. 255–294. | 1997 | Paper |
Golden, R. M., S. S. Henley, H. White, et al. Consequences of model misspecification for maximum likelihood estimation with missing data. In: Econometrics 7.3 (2019), p. 37. | 2019 | Article |
Gondara, L. and K. Wang. MIDA: Multiple Imputation using Denoising Autoencoders. In: Proceedings of the 22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2018). (Jun. 03, 2018-Jun. 06, 2018). Ed. by D. Phung, V. Tseng, G. Webb, B. Ho, M. Ganji and L. Rashidi. Lecture Notes in Computer Science. Springer International Publishing, 2018, pp. 260-272. ISBN: 3319930404. | 2018 | Paper |
Goodfellow, I., M. Mirza, A. Courville, et al. Multi-Prediction Deep Boltzmann Machines. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. (Dec. 05, 2013-Dec. 10, 2013). Ed. by C. Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Weinberger. Advances in Neural Information Processing Systems 26. Curran Associates, Inc., 2013, pp. 548–556. | 2013 | Paper |
Graham, J. W. Missing data analysis: making it work in the real world. In: Annual Review of Psychology 60 (2009), pp. 549-576. | 2009 | Article |
Graham, J. W., A. E. Olchowski, and T. E. Gilreath. How many imputations are really needed? Some practical clarifications of multiple imputation theory. In: Prevention Science 8.3 (2007), pp. 206-213. | 2007 | Article |
Graham, J. W., S. M. Hofer, S. I. Donaldson, et al. The Science of Prevention: Methodological Advances from Alcohol and Substance Abuse Research. In: The Science of Prevention: Methodological Advances from Alcohol and Substance Abuse Research. Ed. by K. Bryant, M. Windle and S. West. Washington, DC, USA: American Psychological Association, 1997. Chap. Analysis with missing data in prevention research, pp. 325-366. ISBN: 1-55798-439-5. | 1997 | Book |
Heckman, J. J. The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. In: Annals of Economic and Social Measurement 5.4 (1976), pp. 475-492. | 1976 | Article |
Heckman, J. Sample selection bias as a specification error. In: Econometrica 47.1 (1979), pp. 153-161. | 1979 | Article |
Hogan, J. W. and N. M. Laird. Mixture models for the joint distribution of repeated measures and event times. In: Statistics in Medecine 16.1-3 (1997), pp. 239-257. | 1997 | Article |
Hogan, J. W. and T. Lancaster. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies. In: Statistical Methods in Medical Research 13.1 (2004), pp. 17-48. | 2004 | Article |
Honaker, J., G. King, and M. Blackwell. Amelia II: a program for missing data. In: Journal of Statistical Software 45.7 (2011). eprint: arXiv:1501.0228. | 2011 | Article |
Horton, N. J. and K. P. Kleinman. Much Ado About Nothing - A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models. In: The American Statistician 61.1 (2017), pp. 79-90. | 2017 | Article |
Hothorn, T., K. Hornik, and A. Zeileis. Unbiased Recursive Partitioning: A Conditional Inference Framework. In: Journal of Computational and Graphical Statistics 15.3 (2012), pp. 651-674. | 2012 | Article |
Huisman, M. Imputation of missing item responses: some simple techniques. In: Quality & Quantity 34.4 (2000), pp. 331-351. | 2000 | Article |
Husson, F. and J. Josse. Handling missing values in multiple factor analysis. In: Food Quality and Preference 30 (2013), pp. 77-85. | 2013 | Article |
Ibrahim, J. G., M. Chen, and S. R. Lipsitz. Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable. In: Biometrika 88.2 (2001), pp. 551-564. | 2001 | Article |
Ibrahim, J. G., S. R. Lipsitz, and M. Chen. Missing Covariates in Generalized Linear Models When the Missing Data Mechanism is Non-Ignorable. In: Journal of the Royal Statistical Society. Series B (Statistical Methodology) 61.1 (1999), pp. 173-190. | 1999 | Article |
Ilin, A. and T. Raiko. Practical approaches to Principal Component Analysis in the presence of missing values. In: Journal of Machine Learning Research 11 (2010), pp. 1957-2000. | 2010 | Article |
Imbert, A., A. Valsesia, C. Le Gall, et al. Multiple hot-deck imputation for network inference from RNA sequencing data. In: Bioinformatics 34.10 (2018), pp. 1726-1732. | 2018 | Article |
Ipsen, N. B., P. Mattei, and J. Frellsen. not-MIWAE: Deep generative modelling with missing not at random data. In: arXiv preprint (2020). |
Ipsen, N., P. Mattei, and J. Frellsen. How to deal with missing data in supervised deep learning? In: ICML Workshop on the Art of Learning with Missing Values (Artemiss). 2020. | 2020 | Paper |
Ipsen, N. B., P. Mattei, and J. Frellsen. not-MIWAE: Deep generative modelling with missing not at random data. In: arXiv preprint (2020). | 2020 | Article |
Jamshidian, M., S. Jalal, and C. Jansen. MissMech: an R package for testing homoscedasticity, multivariate normality, and missing completely at random (MCAR). In: Journal of Statistical Software 56.6 (2014), pp. 1-31. | 2014 | Article |
Jamshidian, M. and S. Jalal. Tests of homoscedasticity, normality, and missing completely at random for incomplete multivariate data. In: Psychometrika 75.4 (2010), pp. 649-674. eprint: NIHMS150003. | 2010 | Article |
Jiang, W., J. Josse, and M. Lavielle. Logistic Regression with Missing Covariates–Parameter Estimation, Model Selection and Prediction. In: arXiv preprint (2018). arXiv: 1805.04602 [stat.ME]. | 2018 | Article |
Joenssen, D. W. and U. Bankhofer. Donor limited hot deck imputation: effect on parameter estimation. In: Journal of Theoretical and Applied Computer Science 6.3 (2012), pp. 58-70. | 2012 | Article |
Jones, M. P. Indicator and Stratification Methods for Missing Explanatory Variables in Multiple Linear Regression. In: Journal of the American Statistical Association 91.433 (1996), pp. 222-230. | 1996 | Article |
Jönsson, P. and C. Wohlin. An evaluation of k-nearest neighbour imputation using lIkert data. In: Proceedings of the 10th International Symposium on Software Metrics. (Sep. 14, 2004-Sep. 16, 2004). Ed. by -. Chicago, IL, USA: IEEE, 2004, pp. 1530-1435. ISBN: 0769521290. | 2004 | Paper |
Josse, J., N. Prost, E. Scornet, et al. On the consistency of supervised learning with missing values. In: arXiv preprint (2019). arXiv: 1902.06931 [stat.ML]. | 2019 | Article |
Josse, J., J. Pagès, and F. Husson. Multiple imputation in principal component analysis. In: Advances in Data Analysis and Classification 5.3 (2011), pp. 231-246. | 2011 | Article |
Josse, J., M. Chavent, B. Liquet, et al. Handling missing values with regularized iterative multiple correspondance analysis. In: Journal of Classification 29.1 (2012), pp. 91-116. | 2012 | Article |
Josse, J., F. Husson, and J. Pagès. Gestion des données manquantes en Analyse en Composantes Principales. In: Journal de la Société Française de Statistique 150.2 (2009), pp. 28-51. | 2009 | Article |
Josse, J. and F. Husson. Handling missing values in exploratory multivariate data analysis methods. In: Journal de la Société Française de Statistique 153.2 (2012), pp. 79-99. | 2012 | Article |
Josse, J. and F. Husson. missMDA: a package for handling missing values in multivariate data analysis. In: Journal of Statistical Software 70.1 (2016), pp. 1-31. | 2016 | Article |
Kaiser, J. Dealing with missing values in data. In: Journal of Systems Integration 5.1 (2014), pp. 42-51. | 2014 | Article |
Kallus, N., X. Mao, and M. Udell. Causal Inference with Noisy and Missing Covariates via Matrix Factorization. In: Advances in Neural Information Processing Systems. Ed. by -. 2018. eprint: 1806.00811. | 2018 | Paper |
Kalton, G. and D. Kasprzyk. The treatment of missing survey data. In: Survey Methodology 12.1 (1986), pp. 1-16. | 1986 | Article |
Kapelner, A. and J. Bleich. Prediction with missing data via Bayesian additive regression trees. In: Canadian Journal of Statistics 43.2 (2015), pp. 224-239. | 2015 | Article |
Khosravi, P., A. Vergari, Y. Choi, et al. Handling missing data in decision trees: A probabilistic approach. In: arXiv preprint arXiv:2006.16341 (2020). | 2020 | Article |
Kim, J. K. and J. Shao. Statistical Methods for Handling Incomplete Data. Boca Raton, FL, USA: Chapman and Hall/CRC, 2013. ISBN: 9781482205077. | 2013 | Book |
Kohn, R. and C. F. Ansley. Estimation, prediction, and interpolation for ARIMA models with missing data. In: Journal of the American Statistical Association 81.395 (1986), pp. 751-761. | 1986 | Article |
Kowarik, A. and M. Templ. Imputation with the R Package VIM. In: Journal of Statistical Software 74.7 (2016), pp. 1-16. | 2016 | Article |
Kropko, J., B. Goodrich, A. Gelman, et al. Multiple Imputation for Continuous and Categorical Data: Comparing Joint Multivariate Normal and Conditional Approaches. In: Political Analysis 22.4 (2014), pp. 497–519. | 2014 | Article |
Larose, C., D. K. Dey, and O. Harel. The impact of missing values on different measures of uncertainty. In: Statistica Sinica 29.2 (2019), pp. 551–566. | 2019 | Article |
Lee, K. M., R. Mitra, and S. Biedermann. Optimal design when outcome values are not missing at random. In: Statistica Sinica 28.4 (2018), pp. 1821–1838. | 2018 | Article |
Lee, K. J., K. Tilling, R. P. Cornish, et al. Framework for the Treatment And Reporting of Missing data in Observational Studies: The Treatment And Reporting of Missing data in Observational Studies framework. In: Journal of clinical epidemiology 134 (2021), pp. 79–88. | 2021 | Article |
Little, R. J. A. A test of missing completely at random for multivariate data with missing values. In: Journal of the American Statistical Association 83.404 (1988), pp. 1198-1202. | 1988 | Article |
Little, R. J. A. Regression with missing X’s: a review. In: Journal of the American Statistical Association 87.420 (1992), pp. 1227-1237. | 1992 | Article |
Little, R. J. A. Pattern-mixture models for multivariate incomplete data. In: Journal of the American Statistical Association 88.421 (1993), pp. 125-134. | 1993 | Article |
Little, R. J. A. Modeling the drop-out mechanism in repeated-measures studies. In: Journal of the American Statistical Association 90.431 (1995), pp. 1112-1121. | 1995 | Article |
Little, R. J. A. and D. B. Rubin. Statistical Analysis with Missing Data. Wiley, 2002, p. 408. ISBN: 0471183865. | 2002 | Book |
Loh, P. and M. J. Wainwright. High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity. In: Advances in Neural Information Processing Systems. Ed. by J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira and K. Q. Weinberger. Vol. 24. Curran Associates, Inc., 2011, pp. 2726–2734. | 2011 | Paper |
Londschien, M., S. Kovács, and P. Bühlmann. Change point detection for graphical models in presence of missing values. 2019. arXiv: 1907.05409 [stat.ML]. | 2019 | Misc |
Louis, T. A. Finding the Observed Information Matrix when Using the EM Algorithm. In: Journal of the Royal Statistical Society. Series B (Methodological) 44.2 (1982), pp. 226–233. | 1982 | Article |
Lüdtke, O., A. Robitzsch, and S. G. West. Regression models involving nonlinear effects with missing data: A sequential modeling approach using Bayesian estimation. In: Psychological methods (2019). | 2019 | Article |
Ma, A. and D. Needell. Stochastic Gradient Descent for Linear Systems with Missing Data. In: Numerical Mathematics: Theory, Methods and Applications 12.1 (2017), pp. 1-20. | 2017 | Article |
Ma, W. and G. H. Chen. Missing Not at Random in Matrix Completion: The Effectiveness of Estimating Missingness Probabilities Under a Low Nuclear Norm Assumption. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d. Alché-Buc, E. Fox and R. Garnett. Curran Associates, Inc., 2019, pp. 14900–14909. | 2019 | Paper |
Mattei, P. and J. Frellsen. MIWAE: Deep generative modelling and imputation of incomplete data sets. In: Proceedings of the 36th International Conference on Machine Learning. Vol. 97. Proceedings of Machine Learning Research. Kamalika Chaudhuri and Ruslan Salakhutdinov, 2019, pp. 4413–4423. | 2019 | Paper |
McLachlan, G. J. and T. Krishnan. The EM Algorithm and Extensions. Wiley series in probability and statistics. Hoboken, NJ, USA: Wiley, 2008. ISBN: 9780471201700. | 2008 | Book |
Meng, S. L. and D. B. Rubin. Maximum likelihood estimation via the ECM algorithm: a general framework. In: Biometrika 80.2 (1993), pp. 267-278. | 1993 | Article |
Meng, X. L. and D. B. Rubin. Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm. In: Journal of the American Statistical Association 86.416 (1991), pp. 899-909. | 1991 | Article |
Meng, X. L. UYou want me to analyze data I don’t have? Are you insane? In: Shanghai Archives of Psychiatry 24.5 (2012), pp. 287-301. | 2012 | Article |
Miao, W. and E. J. Tchetgen Tchetgen. Identification and inference with nonignorable missing covariate data. In: Statistica Sinica 28.4 (2018), pp. 2049–2067. | 2018 | Article |
Moeur, M. and A. R. Stage. Most similar neighbor: an improved sampling inference procedure for natural resources planning. In: Forest Science 42.1 (1995), pp. 337-359. | 1995 | Article |
Mohan, K., F. Thoemmes, and J. Pearl. Estimation with Incomplete Data: The Linear Case. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18. International Joint Conferences on Artificial Intelligence Organization, Jul. 2018, pp. 5082–5088. | 2018 | Paper |
Mohan, K. and J. Pearl. Graphical Models for Processing Missing Data. Tech. rep. R-473-L. Forthcoming, Journal of American Statistical Association (JASA). CA: Department of Computer Science, University of California, Los Angeles, 2019. | 2019 | Misc |
Molenberghs, G., G. Fitzmaurice, M. G. Kenward, et al. Handbook of Missing Data Methodology. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. New York, NY, USA: Chapman and Hall/CRC, 2014. ISBN: 9781439854624. | 2014 | Book |
Molenberghs, G., B. Michiels, M. G. Kenward, et al. Monotone missing data and pattern-mixture models. In: Statistica Neerlandica 52.2 (1998), pp. 153-161. | 1998 | Article |
Molenberghs, G. and M. G. Kenward. Missing Data in Clinical Studies. Chichester, West Sussex, UK: Wiley, 2007. ISBN: 9780470849811. | 2007 | Book |
Molnar, F. J., B. Hutton, and D. Fergusson. Does analysis using last observation carried forward introduce bias in dementia research? In: Canadian Medical Association Journal 179.8 (2008), pp. 751-753. | 2008 | Article |
Moritz, S. and T. Bartz-Beielstein. imputeTS: time series missing value imputation in R. In: The R Journal 9.1 (2017), pp. 207-218. | 2017 | Article |
Moritz, S., A. Sardá, T. Bartz-Beielstein, et al. Comparison of different methods for univariate time series imputation in R. Prepint arXiv 1510.03924. 2015. | 2015 | Misc |
Le Morvan, M., N. Prost, J. Josse, et al. Linear predictor on linearly-generated data with missing values: non consistency and solutions. In: Proceedings of Machine Learning Research. Ed. by -. Vol. 108. Proceedings of Machine Learning Research. 2020, p. 3165–3174. eprint: 2002.00658v2. | 2020 | Paper |
Le Morvan, M., J. Josse, T. Moreau, et al. NeuMiss networks: differentiable programming for supervised learning with missing values. In: Advances in Neural Information Processing Systems, 33. (Dec. 2020). Ed. by -. IEEE, 2020. eprint: 2007.01627v4. | 2020 | Paper |
Le Morvan, M., J. Josse, E. Scornet, et al. What’s a good imputation to predict with missing values? 2021. | 2021 | Misc |
Murray, J. S. and J. P. Reiter. Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models With Local Dependence. In: Journal of the American Statistical Association 111.516 (2016), pp. 1466-1479. | 2016 | Article |
Muzellec, B., J. Josse, C. Boyer, et al. Missing Data Imputation using Optimal Transport. In: International Conference on Machine Learning. PMLR. 2020, pp. 7130–7140. | 2020 | Paper |
Tang, F. and H. Ishwaran. Random forest missing data algorithms. In: Statistical Analysis and Data Mining: The ASA Data Science Journal 10.6 (2017), pp. 363–377. | 2017 | Article |
Nabi, R., R. Bhattacharya, and I. Shpitser. Full Law Identification In Graphical Models Of Missing Data: Completeness Results. In: arXiv preprint arXiv:2004.04872 (2020). | 2020 | Article |
National Research Council, U. The Prevention and Treatment of Missing Data in Clinical Trials. Washington (DC), USA: National Academies Press, 2010. ISBN: 9780309158145. | 2010 | Book |
Nguyen, L. T., J. Kim, and B. Shim. Low-Rank Matrix Completion: A Contemporary Survey. In: IEEE Access 7 (2019), pp. 94215–94237. | 2019 | Article |
Nowicki, R. K., R. Scherer, and L. Rutkowski. Novel rough neural network for classification with missing data. In: 21st International Conference on Methods and Models in Automation and Robotics (MMAR). (Sep. 29, 2016-Sep. 01, 2016). Ed. by -. IEEE, 2016, pp. 820–825. | 2016 | Paper |
O’Kelly, M. and B. Ratitch. Clinical Trials with Missing Data: A Guide for Practitioners. John Wiley & Sons, Ltd, 2014. | 2014 | Book |
Orchard, T. and M. A. Woodbury. A missing information principle: theory and applications. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistic. Ed. by L. M. Le Cam, N. J. and E. L. Scott. Vol. 1. University of California Press, 1972, pp. 697–715. | 1972 | Paper |
Peugh, J. L. and C. K. Enders. Missing data in educational research: a review of reporting practices and suggestions for improvement. In: Review of Educational Research 74.4 (2004), pp. 525–556. | 2004 | Article |
Pigott, T. D. A review of methods for missing data. In: Educational Research and Evaluation 7.4 (2001), pp. 353–383. | 2001 | Article |
Preisser, J. S., K. K. Lohman, and P. J. Rathouz. Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random. In: Statistics in Medicine 21.20 (2002), pp. 3035–3054. | 2002 | Article |
Quartagno, M. and J. R. Carpenter. Multiple imputation for discrete data: Evaluation of the joint latent normal model. In: Biometrical Journal 61.4 (2019), pp. 1003–1019. | 2019 | Article |
Rahman, G. and Z. Islam. Missing value imputation using decision trees and decision forests by splitting and merging records: Two novel techniques. In: Knowledge-Based Systems 53 (2013), pp. 51–65. | 2013 | Article |
Rao, J. N. K. and J. Shao. Jackknife variance estimation with survey data under hot deck imputation. In: Biometrika 79.4 (1992), pp. 811-822. | 1992 | Article |
Reilly, M. and M. Pepe. The relationship between hot-deck multiple imputation and weighted likelihood. In: Statistics in Medecine 16.1-3 (1997), pp. 5-19. | 1997 | Article |
Reiter, J. P. and M. Sadinle. Itemwise conditionally independent nonresponse modelling for incomplete multivariate data. In: Biometrika 104.1 (Jan. 2017), pp. 207-220. eprint: http://oup.prod.sis.lan/biomet/article-pdf/104/1/207/13066719/asw063.pdf. | 2017 | Article |
Rieger, A., T. Hothorn, and C. Strobl. Random forests with missing values in the covariates. Tech. rep. 79. University of Munich, Department of Statistics, 2010. | 2010 | Misc |
Rioux, C., A. Lewin, O. A. Odejimi, et al. Reflection on modern methods: planned missing data designs for epidemiological research. In: International Journal of Epidemiology (2020). | 2020 | Article |
Robin, G. Low-rank methods for heterogeneous and multi-source data. 2019. | 2019 | Misc |
Robin, G., O. Klopp, J. Josse, et al. Main Effects and Interactions in Mixed and Incomplete Data Frames. In: Journal of the American Statistical Association 115.531 (2020), pp. 1292-1303. eprint: https://doi.org/10.1080/01621459.2019.1623041. | 2020 | Article |
Robins, J. M., A. Rotnitzky, and L. P. Zhao. Estimation of Regression Coefficients When Some Regressors are not Always Observed. In: Journal of the American Statistical Association 89.427 (1994), pp. 846-866. | 1994 | Article |
Robins, J. M., A. Rotnitzky, and L. P. Zhao. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. In: Journal of the American Statistical Association 90.429 (1995), pp. 106-121. | 1995 | Article |
Robins, J. M. and N. Wang. Inference for imputation estimators. In: Biometrika 87.1 (2000), pp. 113-124. | 2000 | Article |
Rosseel, Y. lavaan: an R package for structural equation modeling. In: Journal of Statistical Software 48.2 (2012). | 2012 | Article |
Rotnitzky, A., J. M. Robins, and D. O. Scharfstein. Semiparametric regression for repeated outcomes with nonignorable nonresponse. In: Journal of the American Statistical Association 93.444 (1998), pp. 1321-1339. | 1998 | Article |
Rubin, D. B. Inference and missing data. In: Biometrika 63.3 (1976), pp. 581-592. | 1976 | Article |
Rubin, D. B. Formalizing subjective notions about the effect of nonrespondents in sample surveys. In: Journal of the American Statistical Association 72.359 (1977), pp. 538-543. | 1977 | Article |
Rubin, D. B. Multiple imputation after 18+ years. In: Journal of the American Statistical Association 91.434 (2012), pp. 473-489. | 2012 | Article |
Rubin, D. B. Multlipe Imputation for Nonresponse in Surveys. Hoboken, NJ, USA: Wiley, 1987. ISBN: 9780471655740. | 1987 | Book |
Sadinle, M. and J. P. Reiter. Sequential Identification of Nonignorable Missing Data Mechanisms. In: Statistica Sinica 28.4 (2018), pp. 1741–1759. | 2018 | Article |
Sadinle, M. and J. P. Reiter. Sequentially additive nonignorable missing data modeling using auxiliary marginal information. In: arXiv preprint (2019). arXiv: 1902.06043 [stat.ME]. | 2019 | Article |
Santos, M. S., R. C. Pereira, A. F. Costa, et al. Generating Synthetic Missing Data: A Review by Missing Mechanism. In: IEEE Access 7 (2019), pp. 11651–11667. |
— Generating Synthetic Missing Data: A Review by Missing Mechanism. In: IEEE Access 7 (2019), pp. 11651–11667. | 2019 | Article |
Santos, M. S., R. C. Pereira, A. F. Costa, et al. Generating Synthetic Missing Data: A Review by Missing Mechanism. In: IEEE Access 7 (2019), pp. 11651–11667. | 2019 | Article |
Schafer, J. L. Analysis of Incomplete Multivariate Data. CRC Monographs on Statistics & Applied Probability. Boca Raton, FL, USA: Chapman and Hall/CRC, 1997. ISBN: 0412040611. | 1997 | Book |
Schafer, J. L. and J. W. Graham. Missing data: our view of the state of the art. In: Psychological Methods 7.2 (2002), pp. 147-177. | 2002 | Article |
Schafer, J. L. and M. K. Olsen. Multiple Imputation for multivariate missing-data problems: a data analyst’s perspective. In: Multivariate Behavioral Research 33.4 (1998), pp. 545-571. | 1998 | Article |
Schafer, J. L. Multiple imputation: a primer. In: Statistical Methods in Medical Research 8.1 (1999), pp. 3-15. | 1999 | Article |
Seaman, S., J. Galati, D. Jackson, et al. What Is Meant by "Missing at Random"? In: Statistical Science 28.2 (2013), pp. 257–268. |
— What Is Meant by" Missing at Random"? In: Statistical Science (2013), pp. 257–268. | 2013 | Article |
Seaman, S., J. Galati, D. Jackson, et al. What Is Meant by "Missing at Random"? In: Statistical Science 28.2 (2013), pp. 257–268. | 2013 | Article |
Seaman, S. R. and S. Vansteelandt. Introduction to Double Robust Methods for Incomplete Data. In: Statistical Science 33.2 (2018), p. 184. | 2018 | Article |
Seaman, S. R. and I. R. White. Review of inverse probability weighting for dealing with missing data. In: Statistical Methods in Medical Research 22.3 (2011), pp. 278-295. | 2011 | Article |
Shao, J. and J. Zhang. A transformation approach in linear mixed-effects models with informative missing responses. In: Biometrika 102.1 (2015), pp. 107-119. | 2015 | Article |
Sharpe, P. K. and R. J. Solly. Dealing with missing values in neural network-based diagnostic systems. In: Neural Computing & Applications 3.2 (1995), pp. 73-77. | 1995 | Article |
Simon, G. A. and J. S. Simonoff. Diagnostic plots for missing data in least squares regression. In: Journal of the American Statistical Association 81.394 (1986), pp. 501-509. | 1986 | Article |
Śmieja, M., Ł. Struski, J. Tabor, et al. Processing of missing data by neural networks. In: Computing Research Repository abs/1805.07405 (2018). eprint: 1805.07405. | 2018 | Article |
Sovilj, D., E. Eirola, Y. Miche, et al. Extreme learning machine for missing data using multiple imputations. In: Neurocomputing 174.A (2016), pp. 220-231. | 2016 | Article |
Sportisse, A., C. Boyer, and J. Josse. Imputation and low-rank estimation with Missing Not At Random data. In: Statistics and Computing 30.6 (2018), pp. 1629-1643. | 2018 | Article |
Sportisse, A., C. Boyer, and J. Josse. Estimation with informative missing data in the low-rank model with random effects. In: Advances in Neural Information Processing Systems, 33. (Dec. 2020). Ed. by -. IEEE, 2020. eprint: 1906.02493v3. | 2020 | Paper |
Sportisse, A., C. Boyer, A. Dieuleveut, et al. Debiasing Averaged Stochastic Gradient Descent to handle missing values. In: Advances in Neural Information Processing Systems, 33. (Dec. 2020). Ed. by -. IEEE, 2020. eprint: 2002.09338v2. | 2020 | Paper |
Stacklies, W., H. Redestig, M. Scholz, et al. pcaMethods – a bioconductor package providing PCA methods for incomplete data. In: Bioconductor 23.9 (2007), pp. 1164-1167. | 2007 | Article |
Stage, A. R. and N. L. Crookston. Partitioning error components for accuracy-assessment of near-neighbor methods of imputation. In: Forest Science 53.1 (2007), pp. 62-72. | 2007 | Article |
Stekhoven, D. J. and P. Bühlmann. Missforest-non-parametric missing value imputation for mixed-type data. In: Bioinformatics 28.1 (2012), pp. 112-118. eprint: 1105.0828. | 2012 | Article |
Strobl, C., A. L. Boulesteix, and T. Augustin. Unbiased split selection for classification trees based on the Gini Index. In: Computational Statistics & Data Analysis 52.1 (2007), pp. 483-501. | 2007 | Article |
Stuart, E. A., M. Azur, C. Frangakis, et al. Multiple imputation with large data sets: a case study of the children’s mental health initiative. In: American Journal of Epidemiology 169.9 (2009), pp. 1133-1139. | 2009 | Article |
Stubbendick, A. L. and J. G. Ibrahim. Maximum Likelihood Methods for Nonignorable Missing Responses and Covariates in Random Effects Models. In: Biometrics 59.4 (2003), pp. 1140–1150. | 2003 | Article |
Stubbendick, A. L. and J. G. Ibrahim. Likelihood-based inference with nonignorable missing responses and covariates in models for discrete longitudinal data. In: Statistica Sinica 16.4 (2006), pp. 1143–1167. | 2006 | Article |
Su, Y. S., A. Gelman, J. Hill, et al. Multiple imputation with diagnostics (mi) in R: opening windows into the black box. In: Journal of Statistical Software 45 (2011), p. 2. | 2011 | Article |
Tabouy, T., P. Barbillon, and J. Chiquet. Variational inference for stochastic block models from sampled data. In: Journal of the American Statistical Association 115.529 (2020), pp. 455–466. | 2020 | Article |
Tanner, M. A. and W. Wong. The calculation of posterior distributions by data augmentation. In: Journal of the American Statistical Association 82.398 (1987), pp. 528-540. | 1987 | Article |
Tchetgen Tchetgen, E. J., L. Wang, and B. Sun. Discrete choice models for nonmonotone nonignorable missing data: identification and inference. In: Statistica Sinica 28.4 (2018), pp. 2069–2088. | 2018 | Article |
Templ, M., A. Alfons, and P. Filzmoser. Exploring Incomplete data using visualization techniques. In: Advances in Data Analysis and Classification 6.1 (2012), pp. 29-47. | 2012 | Article |
Thijs, H., G. Molenberghs, B. Michiels, et al. Strategies to fit pattern-mixture models. In: Biostatistics 3.2 (2002), pp. 245-265. | 2002 | Article |
Tierney, N. and D. Cook. Expanding tidy data principles to facilitate missing data exploration, visualization and assessment of imputations. Monash Econometrics and Business Statistics Working Papers 14/18. Monash University, Department of Econometrics and Business Statistics, 2018. | 2018 | Misc |
Tierney, N. J., F. A. Harden, M. J. Harden, et al. Using decision trees to understand structure in missing data. In: BMJ Open 5.6 (2015), p. e007450. | 2015 | Article |
Tran, L., X. Liu, J. Zhou, et al. Missing Modalities Imputation via Cascaded Residual Autoencoder. In: 2017 IEEE Conference on Computer Vision and PAttern Recognition (CVPR). (Jul. 21, 2017-Jul. 26, 2017). Ed. by -. IEEE, 2017, pp. 4971-4980. | 2017 | Paper |
Troyanskaya, O., M. Cantor, G. Sherlock, et al. Missing value estimation methods for DNA microarrays. In: Bioinformatics 17.6 (2001), pp. 520-525. | 2001 | Article |
Twala, B. E. T. H., M. C. Jones, and D. J. Hand. Good methods for coping with missing data in decision trees. In: Pattern Recognition Letters 29.7 (2008), pp. 950-956. | 2008 | Article |
Unnebrink, K. and J. Windeler. Intention-to-treat: methods for dealing with missing values in clinical trials of progressively deteriorating diseases. In: Statistics in Medecine 20.24 (2001), pp. 3931-3946. | 2001 | Article |
Buuren, S. van, J. P. L. Brand, C. G. M. Groothuis-Oudshoorn, et al. Fully conditional specification in multivariate imputation. In: Journal of Statistical Computation and Simulation 76.12 (2006), pp. 1049-1064. | 2006 | Article |
Buuren, S. van. Flexible Imputation of Missing Data. Boca Raton, FL: Chapman and Hall/CRC, 2018. | 2018 | Book |
Buuren, S. van and K. Groothuis-Oudshoorn. MICE: multivariate imputation by chained equations in R. In: Journal of Statistical Software 45 (2011), p. 3. eprint: NIHMS150003. | 2011 | Article |
Buuren, S. van. Multiple imputation of discrete and continuous data by fully conditional specification. In: Statistical Methods in Medical Research 16 (2007), pp. 219-242. | 2007 | Article |
Wal, W. M. van der and R. B. Geskus. ipw: an R package for inverse probability weighting. In: Journal of Statistical Software 43.13 (2011). | 2011 | Article |
Velden, M. van de and T. H. A. Bijmolt. Generalized canonical correlation analysis of matrices with missing rows: a simulation study. In: Psychometrika (2006). | 2006 | Article |
Vansteelandt, S., A. Rotnitzky, and J. Robins. Estimation of regression models for the mean of repeated outcomes under nonignorable nonmonotone nonresponse. In: Biometrika 94.4 (2007), pp. 841–860. | 2007 | Article |
Vansteelandt, S., J. Carpenter, and M. G. Kenward. Analysis of incomplete data using inverse probability weighting and doubly robust estimators. In: Methodology – European Journal of Research Methods for the Behavioral and Social Sciences 6.1 (2010), pp. 37–48. | 2010 | Article |
Verbanck, M., J. Josse, and F. Husson. Regularised PCA to denoise and visualise data. In: Statistics and Computing 25.2 (2015), pp. 471-486. | 2015 | Article |
Verbeke, G., G. Molenberghs, H. Thijs, et al. Sensitivity analysis for nonrandom dropout: a local influence approach. In: Biometrics 57.1 (2001), pp. 7-14. | 2001 | Article |
Voillet, V., P. Besse, L. Liaubet, et al. Handling missing rows in multi-omics data integration: multiple imputation in multiple factor analysis framework. In: BMC Bioinformatics 17.402 (2016). Forthcoming. | 2016 | Article |
Wainer, H., ed. Drawing Inferences from Self-Selected Samples. New York, NY, USA: Springer, 1986. | 1986 | Book |
Wang, N. and J. M. Robins. Large-sample theory for parametric multiple imputation procedures. In: Biometrika 85.4 (1998), pp. 935–948. | 1998 | Article |
White, I. R., J. Carpenter, and N. J. Horton. A mean score method for sensitivity analysis to departures from the missing at random assumption in randomised trials. In: Statistica Sinica 28.4 (2018), pp. 1985–2003. | 2018 | Article |
Wu, M. C. and R. J. Carroll. Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. In: Biometrics 44.1 (1988), pp. 175-188. | 1988 | Article |
Xie, X. and X. L. Meng. Dissecting multiple imputation from a multi-phase inference perspective: what happens when God’s, imputer’s and analyst’s models are uncongenial? In: Statistica Sinica 27.4 (2017), pp. 1485–1594. | 2017 | Article |
Xue, F. and A. Qu. Integrating multi-source block-wise missing data in model selection. In: Journal of the American Statistical Association (2020), pp. 1–36. | 2020 | Article |
Yang, S., L. Wang, and P. Ding. Identification and estimation of causal effects with confounders subject to instrumental missingness. In: Statistics Methodology Repository (2017). | 2017 | Article |
Yoon, J., J. Jordon, and M. van der Schaar. GAIN: Missing Data Imputation using Generative Adversarial Nets. In: Proceedings of the 35th International Conference on Machine Learning. (Jul. 10, 2018-Jul. 15, 2018). Ed. by J. Dy and A. Krause. Vol. 80. Proceedings of Machine Learning Research. Stockholmsmässan, Stockholm Sweden: PMLR, 2018, pp. 5689–5698. | 2018 | Paper |
Yoon, S. and S. Sull. GAMIN: Generative Adversarial Multiple Imputation Network for Highly Missing Data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 8456–8464. | 2020 | Paper |
Zhang, H., P. Xie, and E. Xing. Missing Value Imputation Based on Deep Generative Models. In: Computing Research Repository abs/1808.01684 (2018). | 2018 | Article |
Zhang, S. Nearest neighbor selection for iterative kNN imputation. In: Journal of Systems and Software 85.11 (2012), pp. 2541-2552. | 2012 | Article |
Zhao, Y. Statistical inference for missing data mechanisms. In: Statistics in Medicine 39.28 (2020), pp. 4325–4333. | 2020 | Article |
Zhao, Y. and M. Udell. Missing value imputation for mixed data via gaussian copula. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020, pp. 636–646. | 2020 | Paper |
Zhao, J. and Y. Ma. A versatile estimation procedure without estimating the nonignorable missingness mechanism. In: Journal of the American Statistical Association (2021), pp. 1–15. | 2021 | Article |
Zhou, Y., R. J. A. Little, and J. D. Kalbfleisch. Block-conditional missing at random models for missing data. In: Statistical Science 25.4 (2010), pp. 517–532. | 2010 | Article |
Zhu, Z., T. Wang, and R. J. Samworth. High-dimensional principal component analysis with heterogeneous missingness. In: arXiv preprint (2019). | 2019 | Article |